Artykuły w czasopismach na temat „Chiral Plasmonic Nano Shells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chiral Plasmonic Nano Shells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Valagiannopoulos, Constantinos, S. Ali Hassani Gangaraj, and Francesco Monticone. "Zeeman gyrotropic scatterers." Nanomaterials and Nanotechnology 8 (January 1, 2018): 184798041880808. http://dx.doi.org/10.1177/1847980418808087.
Pełny tekst źródłaOrzechowski, Kamil, Martyna Wasiluk, Konrad Jabłoński, et al. "Designated ligand functionalization of gold nanoparticles for optimizing blue-phase liquid crystal composites." Photonics Letters of Poland 16, no. 4 (2024): 71–75. https://doi.org/10.4302/plp.v16i4.1304.
Pełny tekst źródłaWei Si-Yu, Huang Hao, Ma Xiao-Yun, Huang Hai-Wen, Xu Xin, and Wang Rong-Yao. "Selective modulation of the plasmonic circular dichroism enabled by synergic asymmetric optomechanical and photothermal effects in nano-plasmonic chiral structures." Acta Physica Sinica 74, no. 14 (2025): 0. https://doi.org/10.7498/aps.74.20250423.
Pełny tekst źródłaZakomirnyi, Vadim I., Ilia L. Rasskazov, Lasse K. Sørensen, P. Scott Carney, Zilvinas Rinkevicius, and Hans Ågren. "Plasmonic nano-shells: atomistic discrete interaction versus classic electrodynamics models." Physical Chemistry Chemical Physics 22, no. 24 (2020): 13467–73. http://dx.doi.org/10.1039/d0cp02248a.
Pełny tekst źródłaCsernai, L. P., N. Kroo, and I. Papp. "Radiation dominated implosion with nano-plasmonics." Laser and Particle Beams 36, no. 2 (2018): 171–78. http://dx.doi.org/10.1017/s0263034618000149.
Pełny tekst źródłaTatsuma, Tetsu, and Takuya Ishida. "(Invited) Plasmonic Fabrication of Chiral and Magneto-Chiral Nanostructures." ECS Meeting Abstracts MA2024-02, no. 59 (2024): 3970. https://doi.org/10.1149/ma2024-02593970mtgabs.
Pełny tekst źródłaAmboli, Jayeeta, Guillaume Demésy, Bruno Galas, and Nicolas Bonod. "Numerical investigation of far-field circular dichroism and local chiral response of pseudo-chiral meta-surface with FEM." EPJ Web of Conferences 266 (2022): 05001. http://dx.doi.org/10.1051/epjconf/202226605001.
Pełny tekst źródłaTatsuma, Tetsu, Takuya Ishida, and Yuri Kameoka. "(Invited) Plasmonic Nanofabrication of Chiral Nanodisk Ensembles." ECS Meeting Abstracts MA2024-01, no. 13 (2024): 1099. http://dx.doi.org/10.1149/ma2024-01131099mtgabs.
Pełny tekst źródłaYadav, Vikas, and Soumik Siddhanta. "Engineering chiral plasmonic nanostructures for gain-assisted plasmon amplification and tunable enhancement of circular dichroism." Materials Advances 3, no. 3 (2022): 1825–33. http://dx.doi.org/10.1039/d1ma01067k.
Pełny tekst źródłaKlös, Gunnar, Amanda Andersen, Matteo Miola, Henrik Birkedal, and Duncan S. Sutherland. "Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks." Nano Research 12, no. 7 (2019): 1635–42. http://dx.doi.org/10.1007/s12274-019-2412-x.
Pełny tekst źródłaTatsuma, Tetsu, Takuya Ishida, and Hiroyasu Nishi. "(Invited) Photoelectrochemical Fabrication of Chiral Plasmonic Nanostructures By Circularly Polarized Light." ECS Meeting Abstracts MA2022-01, no. 13 (2022): 929. http://dx.doi.org/10.1149/ma2022-0113929mtgabs.
Pełny tekst źródłaZhao, Jun, Bettina Frank, Frank Neubrech, Chunjie Zhang, Paul V. Braun, and Harald Giessen. "Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials." Beilstein Journal of Nanotechnology 5 (May 6, 2014): 577–86. http://dx.doi.org/10.3762/bjnano.5.68.
Pełny tekst źródłaChen, Shanshan, Chang-Yin Ji, Yu Han, et al. "Plasmonic diastereoisomer arrays with reversed circular dichroism simply controlled by deformation height." APL Photonics 7, no. 5 (2022): 056102. http://dx.doi.org/10.1063/5.0085981.
Pełny tekst źródłaRoychoudhury, Piya, Rahul Bose, Przemysław Dąbek, and Andrzej Witkowski. "Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal—A Review." Materials 15, no. 19 (2022): 6597. http://dx.doi.org/10.3390/ma15196597.
Pełny tekst źródłaGhimire, Rupesh, Jhih-Sheng Wu, Vadym Apalkov, and Mark I. Stockman. "Topological nanospaser." Nanophotonics 9, no. 4 (2020): 865–74. http://dx.doi.org/10.1515/nanoph-2019-0496.
Pełny tekst źródłaOsanloo, Nahid, Vahid Ahmadi, Mohammad Naser-Moghaddasi, and Elham Darabi. "Engineered nano-sphere array of gold-DNA core–shells and junctions as opto-plasmonic sensors for biodetection." RSC Advances 11, no. 44 (2021): 27215–25. http://dx.doi.org/10.1039/d1ra03079e.
Pełny tekst źródłaCsernai, L. P. "Advances in Relativistic Fluid Dynamics, Observables, and Applications - In Memoriam Walter Greiner." EPJ Web of Conferences 182 (2018): 01002. http://dx.doi.org/10.1051/epjconf/201818201002.
Pełny tekst źródłaTatsuma, Tetsu, Seung Hyuk Lee, Yuki Oba, and Genki Horiuchi. "(Invited) Near Field Photocatalysis for Site-Selective Reactions By Using ZnO Nanoplates." ECS Meeting Abstracts MA2024-01, no. 35 (2024): 1963. http://dx.doi.org/10.1149/ma2024-01351963mtgabs.
Pełny tekst źródłaKrishana, Shivam, and Nabin Kumar. "Asymmetric Transmission in Diffractive Chiral Metasurfaces Consisting of Nanoantennas." Bulletin of Pure and Applied Sciences – Physics 42, no. 2 (2023): 89–92. http://dx.doi.org/10.48165/bpas.2023.42d.2.5.
Pełny tekst źródłaBiswas, Sudipta, M. R. C. Mahdy, Saikat Chandra Das, Md Ariful Islam Bhuiyan, and Mohammad Abir Talukder. "Controlling the counterintuitive optical repulsive thrust of nano dimers with counter propagating type waves and background medium." PLOS ONE 18, no. 12 (2023): e0295679. http://dx.doi.org/10.1371/journal.pone.0295679.
Pełny tekst źródłaThomas, K. George. "(Invited) Emergent Chiroptical Properties in Assembled Molecules and Materials: From Native Chirality to Global Chirality." ECS Meeting Abstracts MA2024-01, no. 10 (2024): 940. http://dx.doi.org/10.1149/ma2024-0110940mtgabs.
Pełny tekst źródłaRomero, Marcelo R., Alicia V. Veglia, Maria Valeria Amé, and Angel Guillermo Bracamonte. "Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence." Crystals 14, no. 4 (2024): 338. http://dx.doi.org/10.3390/cryst14040338.
Pełny tekst źródłaFrosch, Timea, Andreas Knebl, and Torsten Frosch. "Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy." Nanophotonics 9, no. 1 (2019): 19–37. http://dx.doi.org/10.1515/nanoph-2019-0401.
Pełny tekst źródłaLi, Lianmeng, Xiangyu Zeng, Manna Gu, et al. "Plasmonic Metasurfaces for Superposition of Profile-Tunable Tightly Focused Vector Beams and Generation of the Structured Light." Photonics 10, no. 3 (2023): 317. http://dx.doi.org/10.3390/photonics10030317.
Pełny tekst źródłaLopez-Munoz, Gerardo, Dominik Grochala, Anna Paleczek, et al. "Lithography-Free Metaplasmonic Sensors Developed by TWD/GLAD Technique." ECS Meeting Abstracts MA2024-01, no. 49 (2024): 2705. http://dx.doi.org/10.1149/ma2024-01492705mtgabs.
Pełny tekst źródłaTatsuma, Tetsu. "(Invited) Plasmonic Photocatalysis and Near-Field Photocatalysis." ECS Meeting Abstracts MA2024-02, no. 68 (2024): 4810. https://doi.org/10.1149/ma2024-02684810mtgabs.
Pełny tekst źródłaZhang, Chen, Takuya Ishida, Seung Hyuk Lee, and Tetsu Tatsuma. "Synthesis and Characterization of Superparamagnetic CoPt Alloy Nanoparticles Exhibiting Magneto-Plasmonic Responses." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4595. https://doi.org/10.1149/ma2024-02674595mtgabs.
Pełny tekst źródłaFujii, Minoru, and Hiroshi Sugimoto. "(Invited) Mie Resonant Silicon Nanosphere Nanoantenna for Fluorescence Enhancement." ECS Meeting Abstracts MA2024-01, no. 23 (2024): 1356. http://dx.doi.org/10.1149/ma2024-01231356mtgabs.
Pełny tekst źródłaYang, Xiu, Shanshan Huang, Rohit Chikkaraddy, et al. "Chiral Plasmonic Shells: High-Performance Metamaterials for Sensitive Chiral Biomolecule Detection." ACS Applied Materials & Interfaces, November 15, 2022. http://dx.doi.org/10.1021/acsami.2c16752.
Pełny tekst źródłaSunaba, Yuji, Masaki Ide, Ryo Takei, Kyosuke Sakai, Christophe Pin, and Keiji Sasaki. "Nano-shaping of chiral photons." Nanophotonics, May 16, 2023. http://dx.doi.org/10.1515/nanoph-2022-0779.
Pełny tekst źródłaMassimo, Cuscuna, Manoccio Mariachiara, Esposito Marco, et al. "Gallium chiral nanoshaping for circularpolarization handling." June 7, 2021. https://doi.org/10.1039/d0mh01078b.
Pełny tekst źródłaHuang, Shanshan, Siyi Wang, Xiu Yang, et al. "Ultrasensitive Ultraviolet Chiral Plasmonic Biosensor Based on Passivated Al Shells." ACS Applied Materials & Interfaces, May 1, 2025. https://doi.org/10.1021/acsami.5c02061.
Pełny tekst źródłaWang, Fei, Zexiang Han, Juehan Sun, XueKang Yang, Xiaoli Wang, and Zhiyong Tang. "Reversible Ultrafast Chiroptical Responses in Planar Plasmonic Nano‐Oligomer." Advanced Materials, September 2023. http://dx.doi.org/10.1002/adma.202304657.
Pełny tekst źródłaXie, Yuanyang, Alexey V. Krasavin, Diane J. Roth, and Anatoly V. Zayats. "Unidirectional chiral scattering from single enantiomeric plasmonic nanoparticles." Nature Communications 16, no. 1 (2025). https://doi.org/10.1038/s41467-024-55277-9.
Pełny tekst źródłaYao, Chongyang, Huibin He, Weijia Kong, et al. "Polymer‐Driven Co‐Assembly of Achiral and Chiral Nanoparticles into Plasmonic Nanoclusters with Quantitatively Modulated Optical Chirality." Advanced Science, June 19, 2025. https://doi.org/10.1002/advs.202504850.
Pełny tekst źródłaWang, Hanwei, and Yang Zhao. "Plasmon-enhanced chiral absorption through electric dipole-electric quadrupole interaction." Journal of Optics, June 3, 2024. http://dx.doi.org/10.1088/2040-8986/ad535e.
Pełny tekst źródłaKim, Juhwan, Jang‐Hwan Han, Hyun Min Kim, Tung‐Chun Lee, and Hyeon‐Ho Jeong. "Plasmonic Nano‐Rotamers with Programmable Polarization‐Resolved Coloration." Advanced Optical Materials, November 20, 2023. http://dx.doi.org/10.1002/adom.202301730.
Pełny tekst źródłaRaad, Shiva Hayati, Mehdi Afshari-Bavil, and Dong Liu. "Efficient and high-quality absorption enhancement using epsilon-near-zero cylindrical nano-shells constructed by graphene." Scientific Reports 14, no. 1 (2024). http://dx.doi.org/10.1038/s41598-024-55194-3.
Pełny tekst źródłaZhang, Yan, Yemeng Sun, Xi Ren, et al. "Chiral Polar Bifunctional Polyimide Enantiomers for Asymmetric Photo‐ and Piezo‐catalysis." Angewandte Chemie, October 7, 2024. http://dx.doi.org/10.1002/ange.202416221.
Pełny tekst źródłaZhang, Yan, Yemeng Sun, Xi Ren, et al. "Chiral Polar Bifunctional Polyimide Enantiomers for Asymmetric Photo‐ and Piezo‐catalysis." Angewandte Chemie International Edition, October 7, 2024. http://dx.doi.org/10.1002/anie.202416221.
Pełny tekst źródłaZhang, Yingjie, Junqing Li, Rui Zhao, and Xingguang Liu. "Characteristics of surface plasmonic modes in cylindrical chiral-graphene-dielectric waveguide structure." Journal of Physics D: Applied Physics, November 29, 2022. http://dx.doi.org/10.1088/1361-6463/aca6f4.
Pełny tekst źródłaHuang, Xuedong, Qian Shi, Yanwei Lu, et al. "Single‐Molecule Electrochemiluminescence Imaging of Plasmonic Hot Spot Reactivity." Angewandte Chemie International Edition, July 2, 2025. https://doi.org/10.1002/anie.202508266.
Pełny tekst źródłaHuang, Xuedong, Qian Shi, Yanwei Lu, et al. "Single‐Molecule Electrochemiluminescence Imaging of Plasmonic Hot Spot Reactivity." Angewandte Chemie, July 2, 2025. https://doi.org/10.1002/ange.202508266.
Pełny tekst źródłaQin, Jin, Xiaofei Wu, Anke Krueger, and Bert Hecht. "Light-driven plasmonic microrobot for nanoparticle manipulation." Nature Communications 16, no. 1 (2025). https://doi.org/10.1038/s41467-025-57871-x.
Pełny tekst źródłaWang, Qifa, Jiahe Liu, Chenyang Li, et al. "On‐Demand Fabrication and Manipulation of Single Plasmonic Trimers for Ultrasensitive Enantiomer Detection." Advanced Functional Materials, October 25, 2024. http://dx.doi.org/10.1002/adfm.202412985.
Pełny tekst źródłaHussain, Shahid, Xueyu Guan, Ruonan Ji, and Shao-Wei Wang. "Ultra-wideband chiroptical response by tri-layer anisotropic plasmonic metamaterial." Journal of Physics D: Applied Physics, October 24, 2023. http://dx.doi.org/10.1088/1361-6463/ad066d.
Pełny tekst źródłaGhamari, Shahin, Hsin-Yu Wu, Srikanth Pedireddy, and Frank Vollmer. "Plasmonic nanorod and dimer chiral molecule sensing from cysteine monolayer to bi-layers and multilayered shells." npj Biosensing 2, no. 1 (2025). https://doi.org/10.1038/s44328-025-00036-z.
Pełny tekst źródłaHuang, Shanshan, Shilin Xian, Jialong Peng, Xiu Yang, Jinglei Du, and Yidong Hou. "Long‐Range Disorder MetaSurface Enabled High‐Performance One‐Shot Ultraviolet Full‐Stokes Polarimeter." Laser & Photonics Reviews, August 22, 2024. http://dx.doi.org/10.1002/lpor.202400784.
Pełny tekst źródłaPetronijevic, Emilija, T. Cesca, C. Scian, et al. "Demonstration of extrinsic chirality in self-assembled asymmetric plasmonic metasurfaces and nanohole arrays." Scientific Reports 14, no. 1 (2024). http://dx.doi.org/10.1038/s41598-024-68007-4.
Pełny tekst źródłaCognée, Kévin G., Hugo M. Doeleman, Philippe Lalanne, and A. F. Koenderink. "Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources." Light: Science & Applications 8, no. 1 (2019). http://dx.doi.org/10.1038/s41377-019-0227-x.
Pełny tekst źródła