Gotowa bibliografia na temat „Chiral Plasmonic Nano Shells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Chiral Plasmonic Nano Shells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Chiral Plasmonic Nano Shells"
Valagiannopoulos, Constantinos, S. Ali Hassani Gangaraj i Francesco Monticone. "Zeeman gyrotropic scatterers". Nanomaterials and Nanotechnology 8 (1.01.2018): 184798041880808. http://dx.doi.org/10.1177/1847980418808087.
Pełny tekst źródłaZakomirnyi, Vadim I., Ilia L. Rasskazov, Lasse K. Sørensen, P. Scott Carney, Zilvinas Rinkevicius i Hans Ågren. "Plasmonic nano-shells: atomistic discrete interaction versus classic electrodynamics models". Physical Chemistry Chemical Physics 22, nr 24 (2020): 13467–73. http://dx.doi.org/10.1039/d0cp02248a.
Pełny tekst źródłaCsernai, L. P., N. Kroo i I. Papp. "Radiation dominated implosion with nano-plasmonics". Laser and Particle Beams 36, nr 2 (czerwiec 2018): 171–78. http://dx.doi.org/10.1017/s0263034618000149.
Pełny tekst źródłaKlös, Gunnar, Amanda Andersen, Matteo Miola, Henrik Birkedal i Duncan S. Sutherland. "Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks". Nano Research 12, nr 7 (24.04.2019): 1635–42. http://dx.doi.org/10.1007/s12274-019-2412-x.
Pełny tekst źródłaAmboli, Jayeeta, Guillaume Demésy, Bruno Galas i Nicolas Bonod. "Numerical investigation of far-field circular dichroism and local chiral response of pseudo-chiral meta-surface with FEM". EPJ Web of Conferences 266 (2022): 05001. http://dx.doi.org/10.1051/epjconf/202226605001.
Pełny tekst źródłaYadav, Vikas, i Soumik Siddhanta. "Engineering chiral plasmonic nanostructures for gain-assisted plasmon amplification and tunable enhancement of circular dichroism". Materials Advances 3, nr 3 (2022): 1825–33. http://dx.doi.org/10.1039/d1ma01067k.
Pełny tekst źródłaTatsuma, Tetsu, Takuya Ishida i Hiroyasu Nishi. "(Invited) Photoelectrochemical Fabrication of Chiral Plasmonic Nanostructures By Circularly Polarized Light". ECS Meeting Abstracts MA2022-01, nr 13 (7.07.2022): 929. http://dx.doi.org/10.1149/ma2022-0113929mtgabs.
Pełny tekst źródłaZhao, Jun, Bettina Frank, Frank Neubrech, Chunjie Zhang, Paul V. Braun i Harald Giessen. "Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials". Beilstein Journal of Nanotechnology 5 (6.05.2014): 577–86. http://dx.doi.org/10.3762/bjnano.5.68.
Pełny tekst źródłaChen, Shanshan, Chang-Yin Ji, Yu Han, Xing Liu, Yongtian Wang, Juan Liu i Jiafang Li. "Plasmonic diastereoisomer arrays with reversed circular dichroism simply controlled by deformation height". APL Photonics 7, nr 5 (1.05.2022): 056102. http://dx.doi.org/10.1063/5.0085981.
Pełny tekst źródłaOsanloo, Nahid, Vahid Ahmadi, Mohammad Naser-Moghaddasi i Elham Darabi. "Engineered nano-sphere array of gold-DNA core–shells and junctions as opto-plasmonic sensors for biodetection". RSC Advances 11, nr 44 (2021): 27215–25. http://dx.doi.org/10.1039/d1ra03079e.
Pełny tekst źródłaRozprawy doktorskie na temat "Chiral Plasmonic Nano Shells"
Nair, Greshma. "Theoretical and Experimental Study of Three-Dimensional Chiro-Optical Materials". Thesis, 2016. http://etd.iisc.ac.in/handle/2005/4072.
Pełny tekst źródłaHoang, Phuong. "Design and evaluation of hybrid plasmonic nanostructures towards materialization of SERS sensors". Diss., 2019. http://hdl.handle.net/10754/660103.
Pełny tekst źródłaHOANG, PHUONG. "Design and evaluation of hybrid plasmonic nanostructures towards materialization of SERS sensors". Diss., 2010. http://hdl.handle.net/10754/660103.
Pełny tekst źródłaSingh, Haobijam Johnson. "Engineering Plasmonic Interactions in Three Dimensional Nanostructured Systems". Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3079.
Pełny tekst źródłaSingh, Haobijam Johnson. "Engineering Plasmonic Interactions in Three Dimensional Nanostructured Systems". Thesis, 2016. http://hdl.handle.net/2005/3079.
Pełny tekst źródłaCzęści książek na temat "Chiral Plasmonic Nano Shells"
Kosters, N. D., A. K. de Hoogh, N. Rotenberg, H. Acar, H. Zeijlemaker i L. Kuipers. "Chiral Plasmonic Core-Shell Nanohelices". W NATO Science for Peace and Security Series B: Physics and Biophysics, 529–30. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_60.
Pełny tekst źródłaStreszczenia konferencji na temat "Chiral Plasmonic Nano Shells"
Schäferling, Martin, Mario Hentschel, Daniel Dregely, Xinghui Yin i Harald Giessen. "Design of plasmonic nanostructures for chiral sensing". W THE FIFTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANO-PHOTONICS: TaCoNa-Photonics 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4750101.
Pełny tekst źródłaBiswas, Aritra, Abraham Vázquez-Guardado i Debashis Chanda. "Superchiral light generation on nanoimprinted achiral plasmonic substrates for chiral drug detection". W Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV, redaktorzy Georg von Freymann, Eva Blasco i Debashis Chanda. SPIE, 2021. http://dx.doi.org/10.1117/12.2584087.
Pełny tekst źródłaQuerejeta-Fernandez, Ana, Gregory Chauve, Myriam Methot, Ilya Gourevich, Jean Bouchard i Eugenia Kumacheva. "Chiral plasmonic activity of cholesteric films formed by gold nanorods and cellulose nanocrystals". W 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2014. http://dx.doi.org/10.1109/nano.2014.6968002.
Pełny tekst źródłaYuksel, Anil, Michael Cullinan, Edward T. Yu i Jayathi Murthy. "Enhanced Plasmonic Behavior of Metal Nanoparticles Surrounded With Dielectric Shell". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11994.
Pełny tekst źródłaPolimeno, Paolo A., Francesco Patti, Melissa Infusino, Maria Antonia Iatì, Rosalba Saija, Giovanni Volpe, Onofrio Maria Marago i Alessandro Veltri. "Optical trapping of gain-assisted plasmonic nano-shells: theorical study of the optical forces in a pumped regime below the emission threshold". W Optical Trapping and Optical Micromanipulation XVIII, redaktorzy Kishan Dholakia i Gabriel C. Spalding. SPIE, 2021. http://dx.doi.org/10.1117/12.2594270.
Pełny tekst źródła