Gotowa bibliografia na temat „Chiral ligand-exchange chromatography”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Chiral ligand-exchange chromatography”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Chiral ligand-exchange chromatography"

1

Schmid, Martin G., i Gerald Gübitz. "Chiral separation by ligand-exchange". Macedonian Journal of Chemistry and Chemical Engineering 30, nr 2 (25.12.2011): 127. http://dx.doi.org/10.20450/mjcce.2011.4.

Pełny tekst źródła
Streszczenie:
The principle of chiral ligand-exchange, introduced by Davankov, has become a widely used technique for chiral separation in both chromatography and in electromigration techniques. This simple technique makes use of the formation of mixed metal chelate complexes between a chiral selector and both enantiomers of an analyte. In HPLC, the chiral selector can be either bonded to the stationary phase or added to the mobile phase. In CE the chiral selector is simply added to the electrolyte. A relatively new approach represents CEC, where capillaries contain a chiral stationary phase. More than thousand papers appeared in the field of chiral ligand-exchange. To cite all papers would require several books.The present article gives an overview of both milestones and our activities on chiral separation using the principle of ligand-exchange. Recent advances in chip technology for chiral separations and new approaches regarding improvement of detection sensitivity are mentioned.
Style APA, Harvard, Vancouver, ISO itp.
2

Mathur, R., S. Bohra, V. Mathur, C. K. Narang i N. K. Mathur. "Chiral ligand exchange chromatography on polygalactomannan (Guaran)". Chromatographia 33, nr 7-8 (kwiecień 1992): 336–38. http://dx.doi.org/10.1007/bf02275913.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rizzi, Andreas M. "Efficiency in chiral high-performance ligand-exchange chromatography". Journal of Chromatography A 542 (styczeń 1991): 221–37. http://dx.doi.org/10.1016/s0021-9673(01)88763-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhou, Jie, Suzhen Zhao, Guangjun Fu i Zhenzhong Zhang. "Isoleucine ionic liquids as additives to separate mandelic acid and their derivative enantiomers by HPLC". Anal. Methods 6, nr 15 (2014): 5627–31. http://dx.doi.org/10.1039/c3ay41669k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tian, Minglei, Hyung Sang Row i Kyung Ho Row. "Chiral separation of ofloxacin enantiomers by ligand exchange chromatography". Monatshefte für Chemie - Chemical Monthly 141, nr 3 (18.02.2010): 285–90. http://dx.doi.org/10.1007/s00706-010-0264-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Remelli, M., P. Fornasari, F. Dondi i F. Pulidori. "Dynamic column-coating procedure for chiral ligand-exchange chromatography". Chromatographia 37, nr 1-2 (lipiec 1993): 23–30. http://dx.doi.org/10.1007/bf02272183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sanaie, Nooshafarin, i Charles A. Haynes. "Modeling l-dopa purification by chiral ligand-exchange chromatography". AIChE Journal 53, nr 3 (2007): 617–26. http://dx.doi.org/10.1002/aic.11111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Xiong, Qing, Jing Jin, Liqiong Lv, Zhisi Bu i Shengqiang Tong. "Chiral ligand exchange countercurrent chromatography: Enantioseparation of amino acids". Journal of Separation Science 41, nr 6 (6.02.2018): 1479–88. http://dx.doi.org/10.1002/jssc.201701117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nikolić, N., D. Veselinović, J. Vučina, H. Lingeman i K. Karljiković-Rajić. "Chiral ligand-exchange chromatography for diastereo-enantio separation of exametazime". Journal of Pharmaceutical and Biomedical Analysis 32, nr 6 (sierpień 2003): 1159–66. http://dx.doi.org/10.1016/s0731-7085(03)00230-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Natalini, Benedetto, Antonio Macchiarulo, Roccaldo Sardella, Alberto Massarotti i Roberto Pellicciari. "Descriptive structure-separation relationship studies in chiral ligand-exchange chromatography". Journal of Separation Science 31, nr 13 (lipiec 2008): 2395–403. http://dx.doi.org/10.1002/jssc.200800102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Chiral ligand-exchange chromatography"

1

Zaher, Mustapha. "Nouveaux sélecteurs chiraux à base d'aminoglycosides pour la séparation chirale par échange de ligands". Phd thesis, Grenoble, 2010. http://www.theses.fr/2010GRENV084.

Pełny tekst źródła
Streszczenie:
La séparation d'énantiomères suscite un vif intérêt pour les industries pharmaceutiques, chimiques et agroalimentaires. Les dérivés lipophiles de la néamine ont été utilisés en tant que nouveaux ligands en chromatographie chirale par échange de ligands. Ce travail s'est attaché à étudier les propriétés énantiosélectives des dérivés lipophiles de la néamine en CLHP et en EC. Des dérivés de la néamine (néamine 4'-mono C18, néamine 5-mono C18, néamine 6-mono C18, néamine 3',6-di C18, néamine 4',5-di C18, ou néamine 3′,6-di méthylnaphthalène), ont été synthétisés au sein de notre laboratoire et immobilisés de manière non covalente sur des supports chromatographiques de type C18 et graphite poreux et utilisés avec succès en CCEL pour séparer divers couples d'énantiomères d'acides aminés, de nucléosides et de dipeptides. Néanmoins, certaines molécules hydrophobes, comme le tryptophane, sont éluées trop tardivement et par conséquent, ne sont pas détectables. Pour remédier à ce problème, nous avons considéré la propriété de la néamine 4'-mono C18 à former des micelles, et avons envisagé son utilisation en MEKC. Les énantiomères du tryptophane sont séparés en moins de cinq minutes. Les effets de différentes conditions (concentration du sélecteur chiral, addition de méthanol dans le tampon de migration) sur le temps de migration ont été évalués. Cette méthode d'analyse a ensuite été testée avec succès sur d'autres analytes hydrophobes tels que le 1-méthyl-tryptophane, la 3,5-diiodo-tyrosine et la 1-naphtyl-alanine
The resolution of racemates is necessary in the pharmaceutical, chemical and food fields. The lipophilic derivatives of neamine have been used as a new class of ligands. The aim of this work was to study the enantioselective properties of the lipophilic derivatives of neamine by HPLC and CE. Many derivatives of neamine (4'- mono C18-neamine, 5-mono C18 -neamine, 6-mono C18-neamine, 3 ', 6-di C18-neamine, 4 ', 5-di C18-neamine, or 3′,6-di-O-2-methylnaphthalene-neamine), have been synthesized by our team and immobilized by dynamic coating on a chromatographic support (C18 type or porous graphitic carbon) and used successfully for the first time in LEC to discriminate various couples of enantiomers such as amino acids, nucleosides and dipeptides. However, certain hydrophobic molecules, such as tryptophan, are long retained and consequently not detectable. To overcome these problems, we have considered the property of the neamine 4'-mono C18 to form micelles allowing its use in LE-MEKC. The enantiomers of tryptophan are then separated in less than five minutes. The effects of various conditions (chiral selector concentration and electrolyte methanol content) on the migration time were evaluated. This method was also applied successfully to other hydrophobic enantiomers such as 1-methyl-tryptophan, 3, 5-diiodo-tyrosin and 1-naphtyl-alanine
Style APA, Harvard, Vancouver, ISO itp.
2

Sanaie, Nooshafarin. "A molecular thermodynamic model for chiral drug purification using chiral ligand exchange chromatography". Thesis, 2006. http://hdl.handle.net/2429/18556.

Pełny tekst źródła
Streszczenie:
NR-20081 Chiral ligand exchange chromatography (CLEC) separates enantiomers of alkaloids, amino and carboxylic acids, barbiturates, β-blockers and other adrenergic drugs. It relies on subtle energetic differences between ternary homo- and hetero-chiral complexes formed between a ligand capable of chelating a divalent transition-metal ion and an enantiomer. CLEC separation efficiency is strongly dependent on column operating conditions, including pH, temperature, mobile-phase composition, and feed composition. Each enantiomer participates in a large number of solution and stationary-phase complexes within the column. As a result, the mechanism of separation is complex and poorly understood, making it difficult to identify optimal column operating conditions using conventional empirical strategies. A new model for CLEC-based separations is presented that provides a molecular understanding of the separation process. It combines the non-ideal equilibrium dispersion model of chromatography with multiple chemical equilibria theory to accurately predict enantiomer transport and partitioning, elution band profiles, and separation efficiency over a wide range of permissible column operating conditions. Mass transport parameters are determined by moment analysis and used to show that solute mass transfer and binding is limited by pore diffusion during separation of α-amino acid racemates on a Nucleosil Chiral-1 column (bearing a L-hydroxyproline as the chiral selector) or of dopa enantiomers on a Chirex 3126 column (bearing a derivative of D-penicillamine as the chiral selector). As a result, the local equilibrium approximation can be applied at all standard column operating conditions. Stoichiometries and formation constants for all equilibrium complexes formed in the column are taken from standard thermodynamic databases or independent potentiometric titration experiments. Model performance is assessed through comparison with chromatograms for hydrophobic amino-acid racemates loaded on a Nucleosil Chiral-1 CLEC column. The model is then applied to a medically relevant separation: the resolution of dopa enantiomers on a Chirex 3126 CLEC column. In both cases, the model is shown to provide an accurate and detailed picture of the separation process useful for elucidating the mechanism of separation and the associated influence of key column operating variables on speciation profiles. Finally, the model is successfully applied to a restricted optimization of column operating conditions for the separation of D,L-valine, indicating that it may provide a rapid and comprehensive path to process optimization.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Chiral ligand-exchange chromatography"

1

Lam, S. "Chiral ligand exchange chromatography". W Chiral Liquid Chromatography, 83–101. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0861-1_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lam, S. "Chiral ligand exchange chromatography". W Chiral Liquid Chromatography, 83–101. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0699-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Brückner, Hans, Barbara Sorsche, Ali Esna-Ashari i Rolf Jöster. "Chiral ligand-exchange chromatography of amino acid derivatives". W Amino Acids, 152–58. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-2262-7_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ianni, Federica, Lucia Pucciarini, Andrea Carotti, Roccaldo Sardella i Benedetto Natalini. "Enantioseparations by High-Performance Liquid Chromatography Based on Chiral Ligand Exchange". W Methods in Molecular Biology, 279–302. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9438-0_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Natalini, Benedetto, Roccaldo Sardella i Federica Ianni. "Enantioseparations by High-Performance Liquid Chromatography Based on Chiral Ligand-Exchange". W Methods in Molecular Biology, 191–208. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-263-6_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Udvarhelyi, P. M., D. C. Sunter i J. C. Watkins. "Separation and Assignment of the Stereoisomers of β-(p-Chlorophenyl) Glutamic Acid by Ligand Exchange Chromatography". W Recent Advances in Chiral Separations, 57–62. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8282-9_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Davankov, V. A. "Ligand-Exchange Chromatography of Chiral Compounds". W Complexation Chromatography, 197–246. CRC Press, 2020. http://dx.doi.org/10.1201/9781003066781-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Davankov, V. A. "CHIRAL SEPARATIONS | Ligand Exchange Chromatography". W Encyclopedia of Separation Science, 2369–80. Elsevier, 2000. http://dx.doi.org/10.1016/b0-12-226770-2/03111-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

"Ligand Exchange-Based Chiral Stationary Phases". W Chiral Separations By Liquid Chromatography And Related Technologies, 247–80. CRC Press, 2003. http://dx.doi.org/10.1201/9780203911112.ch7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

"Mechanistic Aspects and Applications of Chiral Ligand- Exchange Chromatography". W Advances in Chromatography, Volume 49, 80–143. CRC Press, 2016. http://dx.doi.org/10.1201/b10721-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii