Artykuły w czasopismach na temat „Chemo-enzymatic catalysis”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Chemo-enzymatic catalysis.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chemo-enzymatic catalysis”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Musa, Musa M., Frank Hollmann i Francesco G. Mutti. "Synthesis of enantiomerically pure alcohols and amines via biocatalytic deracemisation methods". Catalysis Science & Technology 9, nr 20 (2019): 5487–503. http://dx.doi.org/10.1039/c9cy01539f.

Pełny tekst źródła
Streszczenie:
Deracemisation via chemo-enzymatic or multi-enzymatic approaches is the optimum substitute for kinetic resolution, which suffers from the limitation of a theoretical maximum 50% yield albeit high enantiomeric excess is attainable.
Style APA, Harvard, Vancouver, ISO itp.
2

Crowe, Charlotte, Samuel Molyneux, Sunil V. Sharma, Ying Zhang, Danai S. Gkotsi, Helen Connaris i Rebecca J. M. Goss. "Halogenases: a palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation". Chemical Society Reviews 50, nr 17 (2021): 9443–81. http://dx.doi.org/10.1039/d0cs01551b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Xu, Jin, Anthony P. Green i Nicholas J. Turner. "Chemo‐Enzymatic Synthesis of Pyrazines and Pyrroles". Angewandte Chemie International Edition 57, nr 51 (17.12.2018): 16760–63. http://dx.doi.org/10.1002/anie.201810555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Moreira, Marcelo A., i Maria G. Nascimento. "Chemo-enzymatic epoxidation of (+)-3-carene". Catalysis Communications 8, nr 12 (grudzień 2007): 2043–47. http://dx.doi.org/10.1016/j.catcom.2007.02.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Klomklao, Tawesin, Stephen G. Pyne, Apiwat Baramee, Brian W. Skelton i Allan H. White. "Chemo-enzymatic synthesis of (−)-epipentenomycin I". Tetrahedron: Asymmetry 14, nr 24 (grudzień 2003): 3885–89. http://dx.doi.org/10.1016/j.tetasy.2003.10.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Schwendenwein, Daniel, Anna K. Ressmann, Marcello Entner, Viktor Savic, Margit Winkler i Florian Rudroff. "Chemo-Enzymatic Cascade for the Generation of Fragrance Aldehydes". Catalysts 11, nr 8 (30.07.2021): 932. http://dx.doi.org/10.3390/catal11080932.

Pełny tekst źródła
Streszczenie:
In this study, we present the synthesis of chiral fragrance aldehydes, which was tackled by a combination of chemo-catalysis and a multi-enzymatic in vivo cascade reaction and the development of a highly versatile high-throughput assay for the enzymatic reduction of carboxylic acids. We investigated a biocompatible metal-catalyzed synthesis for the preparation of α or β substituted cinnamic acid derivatives which were fed directly into the biocatalytic system. Subsequently, the target molecules were synthesized by an enzymatic cascade consisting of a carboxylate reduction, followed by the selective C-C double bond reduction catalyzed by appropriate enoate reductases. We investigated a biocompatible oxidative Heck protocol and combined it with cells expressing a carboxylic acid reductase from Neurospora crassa (NcCAR) and an ene reductase from Saccharomyces pastorianus for the production fragrance aldehydes.
Style APA, Harvard, Vancouver, ISO itp.
7

Carceller, Jose Miguel, Maria Mifsud, Maria J. Climent, Sara Iborra i Avelino Corma. "Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation". Green Chemistry 22, nr 9 (2020): 2767–77. http://dx.doi.org/10.1039/c9gc04127c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Fang, Yan, Ting He, Hao Gao, Lingling Fan, Jingyuan Liu, Binrui Li, Haowei Zhang i Huiyu Bai. "Polymer Membrane with Glycosylated Surface by a Chemo-Enzymatic Strategy for Protein Affinity Adsorption". Catalysts 10, nr 4 (9.04.2020): 415. http://dx.doi.org/10.3390/catal10040415.

Pełny tekst źródła
Streszczenie:
Membranes with glycosylated surfaces are naturally biomimetic and not only have excellent surface hydrophilicity and biocompatibility, but have a specific recognition to target biomacromolecules due to the unique chemo-biological properties of their surface carbohydrates; however, they cannot be easily chemically produced on large scales due to the complex preparation process. This manuscript describes the fabrication of a polypropylene membrane with a glycosylated surface by a chemo-enzymatic strategy. First, hydroxyl (OH) groups were introduced onto the surface of microporous polypropylene membrane (MPPM) by UV-induced grafting polymerization of oligo(ethylene glycol) methacrylate (OEGMA). Then, glycosylation of the OH groups with galactose moieties was achieved via an enzymatic transglycosylation by β-galactosidase (Gal) recombinanted from E. coli. The fabricated glycosylated membrane showed surprisingly specific affinity adsorption to lectin ricinus communis agglutinin (RCA120). The chemo-enzymatic route is easy and green, and it would be expected to have wide applications for large-scale preparation of polymer membranes with glycosylated surfaces.
Style APA, Harvard, Vancouver, ISO itp.
9

Calderini, Elia, Philipp Süss, Frank Hollmann, Rainer Wardenga i Anett Schallmey. "Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols". Catalysts 11, nr 8 (17.08.2021): 982. http://dx.doi.org/10.3390/catal11080982.

Pełny tekst źródła
Streszczenie:
Multi-step cascade reactions have gained increasing attention in the biocatalysis field in recent years. In particular, multi-enzymatic cascades can achieve high molecular complexity without workup of reaction intermediates thanks to the enzymes’ intrinsic selectivity; and where enzymes fall short, organo- or metal catalysts can further expand the range of possible synthetic routes. Here, we present two enantiocomplementary (chemo)-enzymatic cascades composed of either a styrene monooxygenase (StyAB) or the Shi epoxidation catalyst for enantioselective alkene epoxidation in the first step, coupled with a halohydrin dehalogenase (HHDH)-catalysed regioselective epoxide ring opening in the second step for the synthesis of chiral aliphatic non-terminal azidoalcohols. Through the controlled formation of two new stereocenters, corresponding azidoalcohol products could be obtained with high regioselectivity and excellent enantioselectivity (99% ee) in the StyAB-HHDH cascade, while product enantiomeric excesses in the Shi-HHDH cascade ranged between 56 and 61%.
Style APA, Harvard, Vancouver, ISO itp.
10

Liu, Yeuk Chuen, Hong Li, Albin Otter, Vivekanand P. Kamath, Markus B. Streiff i Monica M. Palcic. "Chemo-enzymatic synthesis of trimeric sialyl Lewisx pentadecasaccharide". Canadian Journal of Chemistry 80, nr 6 (1.06.2002): 540–45. http://dx.doi.org/10.1139/v02-073.

Pełny tekst źródła
Streszczenie:
The enzymatic synthesis of trimeric sialyl Lewisx pentadecasaccharide (6), a 15-mer, from a trimannoside precursor required six different glycosyltransferase enzymes and four nucleotide donor sugars. Three N-acetylglucosaminyl residues were transferred from UDP-N-acetylglucosamine to a trimannoside by N-acetylglucosaminyltransferases I, II, and V, respectively. Galactosylation using β(1[Formula: see text]4) galactosyltransferase and UDP-galactose gave three N-acetyl lactosamine units in nonasaccharide 4. Sialylation of 4 with α(2[Formula: see text]3) sialyltransferase and CMP-N-acetylneuraminic acid was followed by fucosylation with α(1[Formula: see text]3) fucosyltransferase and GDP-fucose giving the 15-mer 6 in mg quantities. Compound 4 was also converted to a trimeric Lewisx dodecasaccharide 12-mer with α(1[Formula: see text]3) fucosyltransferase and GDP-fucose and to a trimeric α-2,6-sialyl N-acetyllactosamine dodecasaccharide 12-mer with α(2[Formula: see text]6) sialyltransferase and CMP-N-acetylneuraminic acid. Key words: glycosyltransferases, pentadecasaccharide, sialyl Lewisx.
Style APA, Harvard, Vancouver, ISO itp.
11

Cambiè, Mara, Paola D'Arrigo, Ezio Fasoli, Stefano Servi, Davide Tessaro, Francesco Canevotti i Lucio Del Corona. "Chemo-enzymatic approach to d-allo-isoleucine". Tetrahedron: Asymmetry 14, nr 20 (październik 2003): 3189–96. http://dx.doi.org/10.1016/j.tetasy.2003.08.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Gimbernat, Alexandra, Marie Guehl, Nicolas Lopes Ferreira, Egon Heuson, Pascal Dhulster, Mickael Capron, Franck Dumeignil, Damien Delcroix, Jean Girardon i Rénato Froidevaux. "From a Sequential Chemo-Enzymatic Approach to a Continuous Process for HMF Production from Glucose". Catalysts 8, nr 8 (17.08.2018): 335. http://dx.doi.org/10.3390/catal8080335.

Pełny tekst źródła
Streszczenie:
Notably available from the cellulose contained in lignocellulosic biomass, glucose is a highly attractive substrate for eco-efficient processes towards high-value chemicals. A recent strategy for biomass valorization consists on combining biocatalysis and chemocatalysis to realise the so-called chemo-enzymatic or hybrid catalysis. Optimisation of the glucose conversion to 5-hydroxymethylfurfural (HMF) is the object of many research efforts. HMF can be produced by chemo-catalyzed fructose dehydration, while fructose can be selectively obtained from enzymatic glucose isomerization. Despite recent advances in HMF production, a fully integrated efficient process remains to be demonstrated. Our innovative approach consists on a continuous process involving enzymatic glucose isomerization, selective arylboronic-acid mediated fructose complexation/transportation, and chemical fructose dehydration to HMF. We designed a novel reactor based on two aqueous phases dynamically connected via an organic liquid membrane, which enabled substantial enhancement of glucose conversion (70%) while avoiding intermediate separation steps. Furthermore, in the as-combined steps, the use of an immobilized glucose isomerase and an acidic resin facilitates catalyst recycling.
Style APA, Harvard, Vancouver, ISO itp.
13

Simons, Chrétien, Ulf Hanefeld, Isabel W. C. E. Arends, Thomas Maschmeyer i Roger A. Sheldon. "Towards catalytic cascade reactions: asymmetric synthesis using combined chemo-enzymatic catalysts". Topics in Catalysis 40, nr 1-4 (listopad 2006): 35–44. http://dx.doi.org/10.1007/s11244-006-0106-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Mikhailopulo, Igor, Irina Konstantinova, Konstantin Antonov, Ilja Fateev, Anatoly Miroshnikov, Vladimir Stepchenko i Alexander Baranovsky. "A Chemo-Enzymatic Synthesis of β-d-Arabinofuranosyl Purine Nucleosides". Synthesis 2011, nr 10 (19.04.2011): 1555–60. http://dx.doi.org/10.1055/s-0030-1260010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Arosio, Dario, Antonio Caligiuri, Paola D'Arrigo, Giuseppe Pedrocchi-Fantoni, Cristina Rossi, Caterina Saraceno, Stefano Servi i Davide Tessaro. "Chemo-Enzymatic Dynamic Kinetic Resolution of Amino Acid Thioesters". Advanced Synthesis & Catalysis 349, nr 8-9 (4.06.2007): 1345–48. http://dx.doi.org/10.1002/adsc.200700050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Öhrlein, R., i Gabriele Baisch. "Chemo-Enzymatic Approach to Statin Side-Chain Building Blocks". Advanced Synthesis & Catalysis 345, nr 67 (czerwiec 2003): 713–15. http://dx.doi.org/10.1002/adsc.200303028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Klaffke, Werner, i Sophie Chambon. "Chemo-enzymatic synthesis of TDP-β-l-ascarylose". Tetrahedron: Asymmetry 11, nr 2 (luty 2000): 639–44. http://dx.doi.org/10.1016/s0957-4166(99)00590-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Jana, Nandan, Tridib Mahapatra i Samik Nanda. "Chemo-enzymatic asymmetric total synthesis of stagonolide-C". Tetrahedron: Asymmetry 20, nr 22 (listopad 2009): 2622–28. http://dx.doi.org/10.1016/j.tetasy.2009.10.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Reddipalli, Gowrisankar, Mallam Venkataiah i Nitin W. Fadnavis. "Chemo-enzymatic synthesis of both enantiomers of rugulactone". Tetrahedron: Asymmetry 21, nr 3 (marzec 2010): 320–24. http://dx.doi.org/10.1016/j.tetasy.2010.01.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Markandan, Kalaimani, Revathy Sankaran, Yong Wei Tiong, Humaira Siddiqui, Mohammad Khalid, Sumira Malik i Sarvesh Rustagi. "A Review on the Progress in Chemo-Enzymatic Processes for CO2 Conversion and Upcycling". Catalysts 13, nr 3 (17.03.2023): 611. http://dx.doi.org/10.3390/catal13030611.

Pełny tekst źródła
Streszczenie:
The increasing concentration of atmospheric CO2 due to human activities has resulted in serious environmental issues such as global warming and calls for efficient ways to reduce CO2 from the environment. The conversion of CO2 into value-added compounds such as methane, formic acid, and methanol has emerged as a promising strategy for CO2 utilization. Among the different techniques, the enzymatic approach based on the CO2 metabolic process in cells presents a powerful and eco-friendly method for effective CO2 conversion and upcycling. This review discusses the catalytic conversion of CO2 using single and multienzyme systems, followed by various chemo-enzymatic processes to produce bicarbonates, bulk chemicals, synthetic organic fuel and synthetic polymer. We also highlight the challenges and prospects for future progress in CO2 conversion via chemo-enzymatic processes for a sustainable solution to reduce the global carbon footprint.
Style APA, Harvard, Vancouver, ISO itp.
21

Fregapane, Giuseppe, Douglas B. Sarney i Evgeny N. Vulfson. "Facile Chemo-Enzymatic Synthesis of Monosaccharide Fatty Acid Esters". Biocatalysis 11, nr 1 (styczeń 1994): 9–18. http://dx.doi.org/10.3109/10242429409034373.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Troøyen, Susanne Hansen, i Elisabeth Egholm Jacobsen. "Chemo-Enzymatic Synthesis of Enantiopure β-Antagonist (S)-Betaxolol". Catalysts 12, nr 12 (15.12.2022): 1645. http://dx.doi.org/10.3390/catal12121645.

Pełny tekst źródła
Streszczenie:
The β-blocker (S)-betaxolol has been synthesized in 99% enantiomeric excess (ee) from the commercially available precursor 4-(2-hydroxyethyl)phenol. The racemic chlorohydrin 1-chloro-3-(4-(2-(cyclopropylmethoxy)ethyl)phenoxy)propan-2-ol was esterified with vinyl acetate catalyzed by lipase B from Candida antarctica, which gave the R-chlorhydrin (R)-1-chloro-3-(4-(2-(cyclopropylmethoxy)ethyl)phenoxy)propan-2-ol in 99% ee with 38% yield. The enantiomeric excess of the R-chlorohydrin was retained in an amination reaction with isopropylamine in methanol to yield (S)-betaxolol in 99% ee and with 9% overall yield. We are under way to improve the yield.
Style APA, Harvard, Vancouver, ISO itp.
23

Scheck, Michael, i Herbert Waldmann. "Chemo-enzymatic synthesis of the C15–C23 unit of Leptomycin B". Canadian Journal of Chemistry 80, nr 6 (1.06.2002): 571–76. http://dx.doi.org/10.1139/v02-070.

Pełny tekst źródła
Streszczenie:
The asymmetric synthesis of the C15–C23 unit of Leptomycin B (LMB) is described. All four stereocenters of the C15–C23 unit were prepared from one building block exhibiting only one stereocenter. This building block was synthesized via either an enzymatic transformation or starting from a chiral reagent.Key words: Leptomycin, natural product synthesis, enzymatic transformation, Aldol reaction, Pseudomonas fluorescence lipase (PFL).
Style APA, Harvard, Vancouver, ISO itp.
24

Riise Moen, Anders, Rasmus Karstad i Thorleif Anthonsen. "Chemo-enzymatic synthesis of both enantiomers of the anti-anginal drug ranolazine". Biocatalysis and Biotransformation 23, nr 1 (styczeń 2005): 45–51. http://dx.doi.org/10.1080/10242420500067357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Laaf, Dominic, Hanna Steffens, Helena Pelantová, Pavla Bojarová, Vladimír Křen i Lothar Elling. "Chemo-Enzymatic Synthesis of BranchedN-Acetyllactosamine Glycan Oligomers for Galectin-3 Inhibition". Advanced Synthesis & Catalysis 359, nr 22 (14.11.2017): 4015–24. http://dx.doi.org/10.1002/adsc.201700969.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Schulz, Daniela, Josephin Marie Holstein i Andrea Rentmeister. "A Chemo-Enzymatic Approach for Site-Specific Modification of the RNA Cap". Angewandte Chemie International Edition 52, nr 30 (21.06.2013): 7874–78. http://dx.doi.org/10.1002/anie.201302874.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Rios, María Yolanda, Enrique Salazar i Horacio F. Olivo. "Chemo-enzymatic Baeyer–Villiger oxidation of cyclopentanone and substituted cyclopentanones". Journal of Molecular Catalysis B: Enzymatic 54, nr 3-4 (sierpień 2008): 61–66. http://dx.doi.org/10.1016/j.molcatb.2007.12.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Annunziata, Francesca, Martina Letizia Contente, Daniele Betti, Cecilia Pinna, Francesco Molinari, Lucia Tamborini i Andrea Pinto. "Efficient Chemo-Enzymatic Flow Synthesis of High Value Amides and Esters". Catalysts 10, nr 8 (16.08.2020): 939. http://dx.doi.org/10.3390/catal10080939.

Pełny tekst źródła
Streszczenie:
A flow-based chemo-enzymatic synthesis of selected APIs (i.e., butacaine, procaine and procainamide) has been developed. A bioreactor made of MsAcT, a versatile acyltransferase from Mycobacterium smegmatis, immobilised on glyoxyl–garose, was exploited to efficiently prepare amide and ester intermediates in gram scale. Immobilised MsAcT was employed in pure organic solvent, demonstrating high stability and reusability. In-line purification of the key intermediates using polymer-bound sulphonyl chloride was added after the bioreactor, enhancing the automation of the process. A final hydrogenation step using the H-Cube reactor was further carried out to obtain the selected APIs in excellent yields (>99%), making the process fast, safe and easily handled.
Style APA, Harvard, Vancouver, ISO itp.
29

Dunsmore, Colin J., Reuben Carr, Toni Fleming i Nicholas J. Turner. "A Chemo-Enzymatic Route to Enantiomerically Pure Cyclic Tertiary Amines". Journal of the American Chemical Society 128, nr 7 (luty 2006): 2224–25. http://dx.doi.org/10.1021/ja058536d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Punthong, Pangrum, Surawit Visitsatthawong, Litavadee Chuaboon, Pimchai Chaiyen i Thanyaporn Wongnate. "Chemo-enzymatic synthesis of sugar acid by pyranose 2-oxidase". Molecular Catalysis 533 (grudzień 2022): 112753. http://dx.doi.org/10.1016/j.mcat.2022.112753.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

D’Arrigo, Paola, Giuseppe Pedrocchi-Fantoni i Stefano Servi. "Chemo-enzymatic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate". Tetrahedron: Asymmetry 21, nr 8 (kwiecień 2010): 914–18. http://dx.doi.org/10.1016/j.tetasy.2010.05.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ferraboschi, Patrizia, Maria De Mieri i Fiorella Galimberti. "Chemo-enzymatic approach to the synthesis of the antithrombotic clopidogrel". Tetrahedron: Asymmetry 21, nr 17 (wrzesień 2010): 2136–41. http://dx.doi.org/10.1016/j.tetasy.2010.06.040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kimura, Mayumi, Atsuhito Kuboki i Takeshi Sugai. "Chemo-enzymatic synthesis of enantiomerically pure (R)-2-naphthylmethoxyacetic acid". Tetrahedron: Asymmetry 13, nr 10 (czerwiec 2002): 1059–68. http://dx.doi.org/10.1016/s0957-4166(02)00242-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Liu, Huiling, B�rd Helge Hoff i Thorleif Anthonsen. "Chemo-enzymatic synthesis of the antidepressant duloxetine and its enantiomer". Chirality 12, nr 1 (2000): 26–29. http://dx.doi.org/10.1002/(sici)1520-636x(2000)12:1<26::aid-chir5>3.0.co;2-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Orellana-Coca, Cecilia, Ulrika Törnvall, Dietlind Adlercreutz, Bo Mattiasson i Rajni Hatti-Kaul. "Chemo-enzymatic epoxidation of oleic acid and methyl oleate in solvent-free medium". Biocatalysis and Biotransformation 23, nr 6 (styczeń 2005): 431–37. http://dx.doi.org/10.1080/10242420500389488.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Watthaisong, Pratchaya, Pornkanok Pongpamorn, Panu Pimviriyakul, Somchart Maenpuen, Yoshihiro Ohmiya i Pimchai Chaiyen. "A Chemo‐Enzymatic Cascade for the Smart Detection of Nitro‐ and Halogenated Phenols". Angewandte Chemie International Edition 58, nr 38 (16.09.2019): 13254–58. http://dx.doi.org/10.1002/anie.201904923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lassfolk, Robert, Anu Suonpää, Klara Birikh i Reko Leino. "Chemo-enzymatic three-step conversion of glucose to kojic acid". Chemical Communications 55, nr 98 (2019): 14737–40. http://dx.doi.org/10.1039/c9cc07405h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Tufvesson, Pär, Dietlind Adlercreutz, Stefan Lundmark, Mircea Manea i Rajni Hatti-Kaul. "Production of glycidyl ethers by chemo-enzymatic epoxidation of allyl ethers". Journal of Molecular Catalysis B: Enzymatic 54, nr 1-2 (lipiec 2008): 1–6. http://dx.doi.org/10.1016/j.molcatb.2007.11.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Drożdż, A., U. Hanefeld, K. Szymańska, A. Jarzębski i A. Chrobok. "A robust chemo-enzymatic lactone synthesis using acyltransferase from Mycobacterium smegmatis". Catalysis Communications 81 (czerwiec 2016): 37–40. http://dx.doi.org/10.1016/j.catcom.2016.03.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Chen, Qihui, Ke Wang i Chengye Yuan. "A chemo-enzymatic synthesis of chiral secondary alcohols bearing sulfur-containing functionality". New Journal of Chemistry 33, nr 5 (2009): 972. http://dx.doi.org/10.1039/b820192g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Simons, Chrétien, Ulf Hanefeld, Isabel W C. E. Arends, Thomas Maschmeyer i Roger A Sheldon. "A One-Pot Enantioselective Chemo-Enzymatic Synthesis of Amino Acids in Water". Advanced Synthesis & Catalysis 348, nr 7-8 (maj 2006): 792. http://dx.doi.org/10.1002/adsc.200690008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Simons, Chrétien, Ulf Hanefeld, Isabel W C. E. Arends, Thomas Maschmeyer i Roger A Sheldon. "A One-Pot Enantioselective Chemo-Enzymatic Synthesis of Amino Acids in Water". Advanced Synthesis & Catalysis 348, nr 4-5 (marzec 2006): 471–75. http://dx.doi.org/10.1002/adsc.200505395.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Holstein, Josephin Marie, Daniela Schulz i Andrea Rentmeister. "Bioorthogonal site-specific labeling of the 5′-cap structure in eukaryotic mRNAs". Chem. Commun. 50, nr 34 (2014): 4478–81. http://dx.doi.org/10.1039/c4cc01549e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

George, Jerrin Thomas, i Seergazhi G. Srivatsan. "Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state". Chemical Communications 56, nr 82 (2020): 12307–18. http://dx.doi.org/10.1039/d0cc05228k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chan, Cecil, Philip B. Cox i Stanley M. Roberts. "Chemo-Enzymatic Synthesis of 13-S-Hydroxyoctadecadienoic Acid (13-S-HODE)". Biocatalysis 3, nr 1-2 (styczeń 1990): 111–18. http://dx.doi.org/10.3109/10242429008992053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Barai, Vladimir N, Anatoli I Zinchenko, Ludmilla A Eroshevskaya, Elena V Zhernosek, Erik De Clercq i Igor A Mikhailopulo. "Chemo-Enzymatic Synthesis of 3-Deoxy-β-D-ribofuranosyl Purines". Helvetica Chimica Acta 85, nr 7 (lipiec 2002): 1893. http://dx.doi.org/10.1002/1522-2675(200207)85:7<1893::aid-hlca1893>3.0.co;2-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Dojahn, Claudine M., Marlen Hesse i Christoph Arenz. "A chemo-enzymatic approach to specifically click-modified RNA". Chemical Communications 49, nr 30 (2013): 3128. http://dx.doi.org/10.1039/c3cc40594j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Errey, James C., Balaram Mukhopadhyay, K. P. Ravindranathan Kartha i Robert A. Field. "Flexible enzymatic and chemo-enzymatic approaches to a broad range of uridine-diphospho-sugars". Chemical Communications, nr 23 (2004): 2706. http://dx.doi.org/10.1039/b410184g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nagy, Krisztina S., Krisztina Toth, Eva Pallinger, Angela Takacs, Laszlo Kohidai, Angela Jedlovszky-Hajdu, Domokos Mathe i in. "Folate-Targeted Monodisperse PEG-Based Conjugates Made by Chemo-Enzymatic Methods for Cancer Diagnosis and Treatment". International Journal of Molecular Sciences 22, nr 19 (26.09.2021): 10347. http://dx.doi.org/10.3390/ijms221910347.

Pełny tekst źródła
Streszczenie:
This paper focuses on preliminary in vitro and in vivo testing of new bivalent folate-targeted PEGylated doxorubicin (DOX) made by modular chemo-enzymatic processes (FA2-dPEG-DOX2). A unique feature is the use of monodisperse PEG (dPEG). The modular approach with enzyme catalysis ensures exclusive γ-conjugation of folic acid, full conversion and selectivity, and no metal catalyst residues. Flow cytometry analysis showed that at 10 µM concentration, both free DOX and FA2-dPEG-DOX2 would be taken up by 99.9% of triple-negative breast cancer cells in 2 h. Intratumoral injection to mice seemed to delay tumor growth more than intravenous delivery. The mouse health status, food, water consumption, and behavior remained unchanged during the observation.
Style APA, Harvard, Vancouver, ISO itp.
50

Dülmen, Melissa, Nils Muthmann i Andrea Rentmeister. "Chemo‐Enzymatic Modification of the 5′ Cap Maintains Translation and Increases Immunogenic Properties of mRNA". Angewandte Chemie International Edition 60, nr 24 (6.05.2021): 13280–86. http://dx.doi.org/10.1002/anie.202100352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii