Gotowa bibliografia na temat „Chemist activity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Chemist activity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Chemist activity"
Howder, Collin R., Kyle D. Groen i Thomas S. Kuntzleman. "JCEClassroom Activity #107. And the Oscar Goes to...A Chemist!" Journal of Chemical Education 87, nr 10 (październik 2010): 1060–61. http://dx.doi.org/10.1021/ed900013z.
Pełny tekst źródłaEfimova, I. "Boris Belousov, Talented Scientific Chemist Dedication Page of Biography". Medical Radiology and radiation safety 66, nr 6 (17.12.2021): 116–18. http://dx.doi.org/10.12737/1024-6177-2021-66-6-116-118.
Pełny tekst źródłaChojecki, Mirosław. "NOW-a w karnawale". Wolność i Solidarność 10 (2017): 50–61. http://dx.doi.org/10.4467/25434942ws.17.003.13116.
Pełny tekst źródłaChojecki, Mirosław. "NOW-a w karnawale". Wolność i Solidarność 10 (2017): 50–61. http://dx.doi.org/10.4467/25434942ws.17.003.13116.
Pełny tekst źródłaLitterman, Nadia, Christopher Lipinski i Sean Ekins. "Small molecules with antiviral activity against the Ebola virus". F1000Research 4 (9.02.2015): 38. http://dx.doi.org/10.12688/f1000research.6120.1.
Pełny tekst źródłaRamesh, Muthusamy, i Arunachalam Muthuraman. "Quantitative Structure-Activity Relationship (QSAR) Studies for the Inhibition of MAOs". Combinatorial Chemistry & High Throughput Screening 23, nr 9 (22.12.2020): 887–97. http://dx.doi.org/10.2174/1386207323666200324173231.
Pełny tekst źródłaKilah, Nathan L., i Eric Meggers. "Sixty Years Young: The Diverse Biological Activities of Metal Polypyridyl Complexes Pioneered by Francis P. Dwyer". Australian Journal of Chemistry 65, nr 9 (2012): 1325. http://dx.doi.org/10.1071/ch12275.
Pełny tekst źródłaDearden, John C. "The History and Development of Quantitative Structure-Activity Relationships (QSARs)". International Journal of Quantitative Structure-Property Relationships 2, nr 2 (lipiec 2017): 36–46. http://dx.doi.org/10.4018/ijqspr.2017070104.
Pełny tekst źródłaHodgson, Geoffrey M., i Michael Polanyi. "Editorial introduction to ‘Collectivist planning’ by Michael Polanyi (1940)". Journal of Institutional Economics 15, nr 6 (20.08.2019): 1055–74. http://dx.doi.org/10.1017/s1744137419000377.
Pełny tekst źródłaM.K.M, ABDUL LATHIFF, SURESH R i SENTHAMARAI R. "A REVIEW ON ANTICANCER ACTIVITIES OF NOVEL DIHYDRO PYRIMIDINONES / THIONES DERIVATIVES". YMER Digital 21, nr 03 (31.03.2022): 460–72. http://dx.doi.org/10.37896/ymer21.03/47.
Pełny tekst źródłaRozprawy doktorskie na temat "Chemist activity"
Fournier, Etienne. "Intérêt de la prise en compte des variabilités de l’activité et de l’acceptabilité dans le cadre d’une conception centrée utilisateurs des situations de travail collaboratives Humain-Robot". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALH011.
Pełny tekst źródłaThe European Commission is encouraging the use of collaborative robots (cobots) to assist humans in their work. However, cobots seem to have difficulty in favorably transforming work situations when they do not consider the variabilities of the situations. The aim of this thesis was therefore to characterize variability in the context of a cobotic implementation, and to guide a design approach focused on future users, using acceptability, acceptance and user experience approaches. An activity analysis was carried out in a chemical laboratory as part of a future cobotic implementation. 11 operators were observed during their activity and 34 took part in semi-directive interviews. The results identified glovebox activity as the workstation that would benefit most from cobotic collaboration. They also showed that certain activities were rendered invisible due to a discrepancy between prescribed work and actual activity, resulting in regular exposure to risks that could be avoided through cobotic implementation. We have thus identified several variabilities with effects on operator activity. These were used to design experimental paradigms to test the effect of cobotic collaboration. Three User Tests were carried out with a total of 212 participants, who were asked to perform industrial assembly tasks where one or more variabilities were considered in the cobotic design. The task was performed either alone, or in pairs with another human or with a cobot (ABB's YuMi). Different types of measurement were carried out: workload (assessed via NASA TLX, Hart, 2006; Hart & Staveland, 1988), number of errors, number of gestures, completion time, degree of acceptability of cobotic collaboration (assessed via TAM, Venkatesh et al., 2012) and simulated risk exposure. Cobotic collaboration reduced the negative effects of several variabilities (e.g. variability in difficulty level, variability in operator expertise) on operator mental load and task success. Participants had a higher task success rate when collaborating with a cobot, even though they otherwise took longer to complete the task. In addition, participants reported enjoying collaborating with a cobot and having confidence in the information it provided (measured via a scale of items from Martin, 2018). Finally, when the cobot adapted to the human's safety constraints, the latter exposed himself to fewer risks. From a theoretical point of view, these empirical studies made it possible to propose a framework integrating models of variability at work, and to shed light on the effects of cobotic collaboration on the human and his task. From a practical point of view, these different studies have enabled us to propose a grid for identifying variabilities and to formulate recommendations designed to support the implementation of cobotic collaboration
Catti, Federica. "4,5-dihydropyrazoles : novel chemistry and biological activity". Thesis, St Andrews, 2007. http://hdl.handle.net/10023/351.
Pełny tekst źródłaDavidson, Nicola E. "Glucosinolates and isothiocyanates : chemistry and biological activity". Thesis, University of St Andrews, 1999. http://hdl.handle.net/10023/14230.
Pełny tekst źródłaKulkarni, M. M. "Chemistry and biological activity of natural products". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1986. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3276.
Pełny tekst źródłaLi, Ju-Yun. "Quantitative structure-activity relationship studies in medicinal chemistry". Case Western Reserve University School of Graduate Studies / OhioLINK, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=case1062596938.
Pełny tekst źródłaPathirana, Navin Deepal. "Chemistry and biological activity of iron quinoneoximic complexes". Thesis, London Metropolitan University, 1990. http://repository.londonmet.ac.uk/2977/.
Pełny tekst źródłaCox, Kaleb Woodrow. "Synthesis and Biological Activity of Indolinones". Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1421165680.
Pełny tekst źródłaNunes, R. J. "The chemistry and biological activity of cyclic imidobenzenesulphonyl derivatives". Thesis, University of Hertfordshire, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370823.
Pełny tekst źródłaPaige, Mikell Atkin. "Modular synthesis of Annonaceous acetogenins and their activity against H-116 human solid colon tumor cells". Full text, Acrobat Reader required, 2003. http://viva.lib.virginia.edu/etd/diss/ArtsSci/Chemistry/2003/Paige/Dissertation.pdf.
Pełny tekst źródłaMurphy, Veronica L. "Optical Activity of Achiral Molecules". Thesis, New York University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10192177.
Pełny tekst źródłaOptical activity is typically first introduced to a prospective chemist in her sophomore year organic chemistry course. Here, she is taught that optical activity is a consequence of chirality, for example, L-tartaric acid has a specific rotation of +12° at the sodium D-line. However, this leaves said chemist with a wildly skewed and rather vague understanding of the concept of optical activity. There are two major problems with the current understanding of optical activity. The first is that both theory and experiment have shown that optical activity is, in fact, not a consequence of chirality. Molecules belonging to one of four achiral point groups (Cs, C2 v, S4, and D 2d) can display optical activity in particular directions. However, measurement requires an anisotropic medium which presents major challenges. The second problem is that we lack structure-property relationships; specific rotations generally speaking are impossible to connect to molecular structure. Herein, we emphasize optical activity in achiral molecules whose high symmetry and simplified electronic structure are used to establish structure–property relationships. First, achiral optical activity is emphasized by showing that achiral polyaromatic hydrocarbons (PAH) are actually significantly more optically active than their helicene isomers. Next, small, planar, conjugated hydrocarbons are used to interpret optical activity by analysis of their π wave functions that can be intuited from structure. Finally, it is shown that aromaticity is generally deleterious for optical activity. A simple explanation is offered based on Kekule structures.
Książki na temat "Chemist activity"
Pitaud, Henri. Paysan et militant: Mes chemins sauvages : souvenirs 1921-1940. Beauvoir-sur-Mer: Etrave, 2001.
Znajdź pełny tekst źródłaPaxton, Robert O. Le temps des chemises vertes: Révoltes paysannes et fascisme rural, 1929-1939. Paris: Editions du Seuil, 1996.
Znajdź pełny tekst źródłaPillon, Lilianna Z. Surface activity of petroleum derived lubricants. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaPillon, Lilianna Z. Surface activity of petroleum derived lubricants. Boca Raton [Fla.]: Taylor & Francis, 2011.
Znajdź pełny tekst źródłaSylvio, Canuto, red. Solvation effects on molecules and biomolecules: Computational methods and applications. [Dordrecht]: Springer, 2008.
Znajdź pełny tekst źródłaCairns, Donald. Essentials of pharmaceutical chemistry. Wyd. 3. London: Pharmaceutical Press, 2008.
Znajdź pełny tekst źródłaDelehedde, Maryse, i Hugues Lortat-Jacob. New developments in therapeutic glycomics. Trivandrum, Kerala, India: Research Signpost, 2006.
Znajdź pełny tekst źródłaCasy, Alan F. The steric factor in medicinal chemistry: Dissymmetric probesof pharmacological receptors. New York: Plenum Press, 1993.
Znajdź pełny tekst źródłaH, Dewar George, red. The steric factor in medicinal chemistry: Dissymmetric probes of pharmacological receptors. New York: Plenum Press, 1993.
Znajdź pełny tekst źródłaTsujii, Kaoru. Surface activity: Principles, phenomena, and applications. San Diego: Academic Press, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Chemist activity"
Owen, Michael J. "Siloxane Surface Activity". W Advances in Chemistry, 705–39. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0224.ch040.
Pełny tekst źródłaMahaffy, Peter. "Chemistry Education and Human Activity". W Chemistry Education, 1–26. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527679300.ch1.
Pełny tekst źródłaDouglas, Bodie. "Optical Activity in Coordination Chemistry". W ACS Symposium Series, 275–85. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0565.ch022.
Pełny tekst źródłaChoudhary, M. Iqbal, Sammer Yousuf i Atta-ur-Rahman. "Withanolides: Chemistry and Antitumor Activity". W Natural Products, 3465–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_150.
Pełny tekst źródłaDuben, Anthony J. "Activity Coefficients". W Case Studies in the Virtual Physical Chemistry Laboratory, 125–60. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-55018-8_7.
Pełny tekst źródłaSheehan, John C., Hans Georg Zachau i William B. Lawson. "The Chemistry of Etamycin". W Ciba Foundation Symposium - Amino Acids and Peptides with Antimetabolic Activity, 149–56. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719114.ch12.
Pełny tekst źródłaSharma, Varsha, Akshay Katiyar i R. C. Agrawal. "Glycyrrhiza Glabra: Chemistry and Pharmacological Activity". W Reference Series in Phytochemistry, 1–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26478-3_21-1.
Pełny tekst źródłaSharma, Varsha, Akshay Katiyar i R. C. Agrawal. "Glycyrrhiza glabra: Chemistry and Pharmacological Activity". W Reference Series in Phytochemistry, 87–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-27027-2_21.
Pełny tekst źródłaDembitsky, Valery M., Alexander O. Terent’ev i Dmitri O. Levitsky. "Aziridine Alkaloids: Origin, Chemistry and Activity". W Natural Products, 977–1006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_93.
Pełny tekst źródłaBurgot, Jean-Louis. "Activities and Activity Coefficients". W Ionic Equilibria in Analytical Chemistry, 37–48. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-8382-4_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Chemist activity"
Saputro, Ari Wahyu, Antuni Wiyarsi i Jaslin Ikhsan. "Chemtrepreneur, introducing entrepreneurial activity in colloid chemistry". W PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CHEMICAL PROCESSING AND ENGINEERING (4th IC3PE). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0204706.
Pełny tekst źródłaPutri, Devi A., Riyadatus Solihah, Rianur Oktavia i Sri Fatmawati. "Phytochemical and antioxidant activity of Nicotiana tabacum extracts". W 1ST INTERNATIONAL SEMINAR ON CHEMISTRY AND CHEMISTRY EDUCATION (1st ISCCE-2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0110413.
Pełny tekst źródłaWelchinskaya, Elena. "CHEMISTRY AND ANTITUMOUR ACTIVITY OF 5-BROMOURACILE’S DERIVATIVES". W CBU International Conference on Integration and Innovation in Science and Education. Central Bohemia University, 2013. http://dx.doi.org/10.12955/cbup.2013.45.
Pełny tekst źródłaAlves, Luis, João Portel, Sílvia Sousa, Jorge Leitão i Ana Martins. "Antibacterial activity of cyclam derivatives". W 4th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/ecmc-4-05595.
Pełny tekst źródłaAghaee, Mina, Mahnaz Abbaszadeh Alishahi i Faranak Manteghi. "Antimicrobial Activity of Ba-MOF". W International Electronic Conference on Synthetic Organic Chemistry. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecsoc-26-13725.
Pełny tekst źródłaRetnosari, Rini, Ihsan B. Rachman, Sutrisno Sutrisno, Meyga E. F. Sari, Dedek Sukarianingsih i Yaya Rukayadi. "The antibacterial activity of vanillin derivative compounds". W 4TH INTERNATIONAL SEMINAR ON CHEMISTRY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0051523.
Pełny tekst źródłaAnnuur, Rose Malina, Dyah Ayu Titisari, Rahma Rahayu Dinarlita, Arif Fadlan, Taslim Ersam, Titik Nuryastuti i Mardi Santoso. "Synthesis and anti-tuberculosis activity of trisindolines". W THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082493.
Pełny tekst źródłaDiamond, Gill, Erika Figgins, Denny Gao, Annelise E. Barron i Kent Kirshenbaum. "Broad-Spectrum Activity of Antimicrobial Peptoids". W International Electronic Conference on Medicinal Chemistry. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecmc2022-13491.
Pełny tekst źródłaČesnek, Michal, i Antonín Holý. "Biological activity of selected guanidinopurines". W XIIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2005. http://dx.doi.org/10.1135/css200507249.
Pełny tekst źródłaLulan, Theodore Y. K., Sri Fatmawati, Mardi Santoso i Taslim Ersam. "Free radical scavenging activity of Artocarpus champeden extracts". W THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082460.
Pełny tekst źródłaRaporty organizacyjne na temat "Chemist activity"
Y. Wang. Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry. Office of Scientific and Technical Information (OSTI), listopad 2004. http://dx.doi.org/10.2172/840430.
Pełny tekst źródłaG.H. Nieder-Westermann. Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry. Office of Scientific and Technical Information (OSTI), maj 2005. http://dx.doi.org/10.2172/841372.
Pełny tekst źródłaBrown, Michael. Update on Activity 6: Target Solution Chemistry Determination of Iron Sulfate. Office of Scientific and Technical Information (OSTI), wrzesień 2014. http://dx.doi.org/10.2172/1157513.
Pełny tekst źródłaKim, Dong-Sang, Chuck Z. Soderquist, Jonathan P. Icenhower, B. PETER McGrail, Randall D. Scheele, Bruce K. McNamara, Larry M. Bagaasen i in. Tc Reductant Chemistry and Crucible Melting Studies with Simulated Hanford Low-Activity Waste. Office of Scientific and Technical Information (OSTI), marzec 2005. http://dx.doi.org/10.2172/15020035.
Pełny tekst źródłaKeinan, Ehud. Asian Chemists speak with one voice. AsiaChem Magazine, listopad 2020. http://dx.doi.org/10.51167/acm00001.
Pełny tekst źródłaНечипуренко, Павло Павлович, Тетяна Валеріївна Старова, Тетяна Валеріївна Селіванова, Анна Олександрівна Томіліна i Олександр Давидович Учитель. Use of Augmented Reality in Chemistry Education. CEUR-WS.org, listopad 2018. http://dx.doi.org/10.31812/123456789/2658.
Pełny tekst źródłaCronauer, D. Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004. Office of Scientific and Technical Information (OSTI), maj 2006. http://dx.doi.org/10.2172/928626.
Pełny tekst źródłaLeighton, C., D. Layton-Matthews, J. M. Peter i M. G. Gadd. Application of pyrite chemistry to recognize a distal expression of hydrothermal activity in the MacMillan Pass SEDEX district, Yukon. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/313646.
Pełny tekst źródłaMustain, William. Understanding the Effects of Surface Chemistry and Microstructure on the Activity and Stability of Pt Electrocatalysts on Non-Carbon Supports. Office of Scientific and Technical Information (OSTI), luty 2015. http://dx.doi.org/10.2172/1169894.
Pełny tekst źródłaCronauer, D. C. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005. Office of Scientific and Technical Information (OSTI), kwiecień 2011. http://dx.doi.org/10.2172/1011836.
Pełny tekst źródła