Gotowa bibliografia na temat „Chemical processes”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Chemical processes”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Chemical processes"

1

Ahmad, Rasheed, Shaista Begum, Eric M. V. Hoek, Tanju Karanfil, Esra Ates Genceli, Abhishek Yadav, Paras Trivedi i Chunlong Carl Zhang. "Physico-Chemical Processes". Water Environment Research 76, nr 6 (wrzesień 2004): 823–1002. http://dx.doi.org/10.2175/106143004x142013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ahmad, Rasheed, Shaista Begum, Chunlong Carl Zhang, Tanju Karanfil, Esra Ates Genceli, Abhishek Yadav i Sirajuddin Ahmed. "Physico-Chemical Processes". Water Environment Research 77, nr 6 (wrzesień 2005): 982–1156. http://dx.doi.org/10.2175/106143005x54371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Karanfil, Tanju, Abhishek Yadav, Chunlong Carl Zhang, Suman Ghosh i Sirajuddin Ahmed. "Physico-Chemical Processes". Water Environment Research 78, nr 10 (wrzesień 2006): 1193–260. http://dx.doi.org/10.2175/106143006x119198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Grenoble, Zlata, Chunlong Carl Zhang, Sirajuddin Ahmed, Stuart B. Jeffcoat, Tanju Karanfil, Meric Selbes, Sehnaz Sule Kaplan, Shaista Begum i Rasheed Ahmad. "Physico-Chemical Processes". Water Environment Research 79, nr 10 (wrzesień 2007): 1228–96. http://dx.doi.org/10.2175/106143007x218395.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ahmad, Rasheed, Chunlong Carl Zhang, Sirajuddin Ahmed, Tanju Karanfil, Sehnaz Sule Kaplan, Meric Selbes i Shaista Begum. "Physico-Chemical Processes". Water Environment Research 80, nr 10 (październik 2008): 978–1035. http://dx.doi.org/10.2175/106143008x328554.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chelme-Ayala, Pamela, Atefeh Afzal, Parastoo Pourrezaei, Yingnan Wang, Mario A. Zapata, Ning Ding, Jing Jin, Nan Wang, Przemyslaw Drzewicz i Mohamed Gamal El-Din. "Physico-Chemical Processes". Water Environment Research 81, nr 10 (10.09.2009): 1056–126. http://dx.doi.org/10.2175/106143009x12445568399451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pourrezaei, Parastoo, Atefeh Afzal, Ning Ding, Md Shahinoor Islam, Ahmed Moustafa, Przemys ł. Aw Drzewicz, Pamela Chelme-Ayala i Mohamed Gamal El-Din. "Physico-Chemical Processes". Water Environment Research 82, nr 10 (1.01.2010): 997–1072. http://dx.doi.org/10.2175/106143010x12756668800852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Afzal, Atefeh, Parastoo Pourrezaei, Ning Ding, Ahmed Moustafa, Geelsu Hwang, Przemyslaw Drzewicz, Eun-Sik Kim i in. "Physico-Chemical Processes". Water Environment Research 83, nr 10 (1.01.2011): 994–1091. http://dx.doi.org/10.2175/106143011x13075599869173.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chelme-Ayala, Pamela, Atefeh Afzal, Ning Ding, Ahmed M. A. Moustafa, Parastoo Pourrezaei, Alla Alpatova, Przemysław Drzewicz i in. "Physico-Chemical Processes". Water Environment Research 84, nr 10 (1.10.2012): 971–1028. http://dx.doi.org/10.2175/106143012x13407275694752.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hua, Bin, John Yang, John Lester i Baolin Deng. "Physico-Chemical Processes". Water Environment Research 85, nr 10 (1.10.2013): 963–91. http://dx.doi.org/10.2175/106143013x13698672321823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Chemical processes"

1

Li, Fanxing. "CHEMICAL LOOPING GASIFICATION PROCESSES". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236704412.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lai, Sau Man. "Feasibility and flexibility in chemical process design /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20LAI.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Smith, G. J. "Dynamic simulation of chemical processes". Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Few, Julian William. "FTIR studies of chemical processes". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:b7dbc587-fb9e-46de-8f04-44892fde0bf4.

Pełny tekst źródła
Streszczenie:
This thesis presents the study of a selection of gas phase chemical processes using time-resolved Fourier transform infrared (FTIR) emission spectroscopy. Such processes include molecular energy transfer, chemical reaction and photodissociation. The major focus of this thesis was the investigation of collisional energy transfer from the electronically excited states of NO and OH, with particular attention paid to the fate of the electronic energy. NO A2Σ+(v = 0) is prepared by laser excitation, pumping the overlapped Q1 and P21 band heads of the NO A-X (0,0) transition at 226.257 nm. The quenching of this state by O2 and CO2 was studied. Experiments were performed to investigate what channels contribute to the quenching process, the branching ratio of these different channels and the partitioning of energy among the various products. Quenching by O2 was found to proceed mostly through non-reactive channels. High vibrational excitation of NO X 2Π was observed, with population detected in v = 22, representing 79% of the available energy. The O2 product was found to be formed in more than one electronic state: the ground state, X 3Σ-g, and a high-lying electronically excited state, such as the A 3Σ+u, A' 3Δu or c 1Σ-u states. A reactive channel producing vibrationally excited NO2 was observed, but was found to be a minor process with an upper limit of 18% for the branching ratio. In contrast the quenching of NO A 2Σ+(v = 0) by CO2 was found to proceed predominately by reaction, with a branching ratio of 76 %. While emission from NO2 was observed, it was weak, and therefore it was concluded that the main reaction products were CO, O(3P) and NO X 2Π(v = 0). The nascent strong CO2 v3 emission band from the non-reactive channel exhibited a large red-shift from its fundamental position. This indicates that the CO2 vibrational distribution is significantly hotter than statistical. Investigations were then performed studying the quenching of NO A 2Σ+(v = 1) by NO and CO2, with both systems exhibiting similar characteristics to the quenching of the ground vibrational level of NO A 2Σ+. From comparison of the emission intensity of the CO fundamental and CO2 v3 mode following quenching of the v = 0 and 1 levels of the NO A 2Σ+ state, it was concluded that the branching ratio for reactive quenching was larger in the latter case. Secondly, experiments were performed to measure the rate constants for the quenching of NO A 2Σ+(v = 0) by the noble gases. The noble gases are inefficient quenchers of electronically excited NO and therefore careful experimental design was required to minimise the influence of impurities on the results. All the rate constants were found to be of the order of 10-14 cm3 molecule-1 s-1. The value for Xe was 50 times smaller than reported previously in the literature. In light of this new measurement, a re-analysis of experiments, performed previously in the group, on the electronic quenching of NO A 2Σ+(v = 0) by Xe was performed. A very hot vibrational distribution of NO X 2Π was obtained. Next, the collisional quenching of OH A 2Σ+(v = 0) by H2 was investigated. OH radicals were generated in situ by the photolysis of HNO3 at 193 nm, which were excited to the A 2Σ+(v = 0) state on the overlapped Q1(1) and P21(1) rotational lines at 307.935 nm. Reactive quenching was found to be the major pathway, in agreement with the literature. Copious emission from vibrationally excited water was observed. Comparison of this emission with theoretical calculations revealed a hotter distribution than predicted. It was concluded that the energy channelled into the vibrational modes of H2O is in excess of 60% of the available energy. Experiments performed with D2 allowed the non-reactive channel to be studied; a cold vibrational distribution of the OH X 2Π was observed. Finally the reaction between CN radicals and cyclohexane was studied. CN was generated by the photolysis of ICN at 266 nm. Prompt emission from HCN in the C-H stretching region was observed meaning the new bond was formed in a vibrationally excited state. Analysis of the emission revealed HCN was populated up to v3 = 2. Excellent agreement with the results of a theoretical study of the system was found.
Style APA, Harvard, Vancouver, ISO itp.
5

Singh, Lakhbinder. "Dynamic simulation of chemical processes". Thesis, Aston University, 1991. http://publications.aston.ac.uk/9731/.

Pełny tekst źródła
Streszczenie:
This thesis describes the design and implementation of an interactive dynamic simulator called DASPRII. The starting point of this research has been an existing dynamic simulation package, DASP. DASPII is written in standard FORTRAN 77 and is implemented on universally available IBM-PC or compatible machines. It provides a means for the analysis and design of chemical processes. Industrial interest in dynamic simulation has increased due to the recent increase in concern over plant operability, resiliency and safety. DASPII is an equation oriented simulation package which allows solution of dynamic and steady state equations. The steady state can be used to initialise the dynamic simulation. A robust non linear algebraic equation solver has been implemented for steady state solution. This has increased the general robustness of DASPII, compared to DASP. A graphical front end is used to generate the process flowsheet topology from a user constructed diagram of the process. A conversational interface is used to interrogate the user with the aid of a database, to complete the topological information. An original modelling strategy implemented in DASPII provides a simple mechanism for parameter switching which creates a more flexible simulation environment. The problem description generated is by a further conversational procedure using a data-base. The model format used allows the same model equations to be used for dynamic and steady state solution. All the useful features of DASPI are retained in DASPII. The program has been demonstrated and verified using a number of example problems, Significant improvements using the new NLAE solver have been shown. Topics requiring further research are described. The benefits of variable switching in models has been demonstrated with a literature problem.
Style APA, Harvard, Vancouver, ISO itp.
6

Inamdar, S. R. "Global optimization of chemical processes". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2012. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yan, Ming. "Multi-objective, plant-wide control and optimization of chemical processes /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/9918.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Weikel, Ross R. "Physical Transformations for Greener Chemical Processes". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/11654.

Pełny tekst źródła
Streszczenie:
Homogenous acid catalysts are prevalent throughout the chemical industry but all have the drawback of requiring post reaction neutralization and subsequent downstream removal of the product salt. The use of a base to neutralize the acid and the processing of the salt are ancillary to the process and the disposal of the salt is an environmental concern. The work presented here shows the use of alkylcarbonic acids, which form in situ with CO₂ pressure and neutralize on loss of CO₂ pressure rather than requiring a base. Thus CO₂ can be used to "switch" the acid on and off. The properties of alkylcarbonic acids are explored to gain understanding of the mechanisms by which they act. The acids are also used to catalyze the synthesis of α-pinene, methyl yellow, and benzyl iodide. These reactions are examples of common acid catalyzed reactions where this technology could be implemented. The second half of the work explores two other "switches". The first is using temperature to break an emulsion with a novel thermally cleavable surfactant. This technology has potential applications in a wide range of fields where surfactants are used including polymerization, oil recovery, and biosynthesis. The second is using CO₂ to liquefy a solid ionic compound to allow its use as a solvent. This would greatly increase the number of ionic species available for use in ionic liquid-CO₂ biphasic systems.
Style APA, Harvard, Vancouver, ISO itp.
9

Kondili, Emilia. "Optimal scheduling of batch chemical processes". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/8853.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ydstie, Birger Erik. "Robust adaptive control of chemical processes". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/8295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Chemical processes"

1

Bayquen, Cecilia V. Industrial chemical processes. Manila, Philippines: UST Pub. House, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

1943-, Freeman Harry, red. Physical/chemical processes. Lancaster: Technomic Pub. Co., 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Majozi, Thokozani, Esmael R. Seid i Jui-Yuan Lee. Understanding Batch Chemical Processes. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/b20570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hungerbühler, Konrad, Justin M. Boucher, Cecilia Pereira, Thomas Roiss i Martin Scheringer. Chemical Products and Processes. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62422-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sadhukhan, Jhuma, Kok Siew Ng i Elias Martinez Hernandez. Biorefineries and Chemical Processes. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118698129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tabatabai, M. A., i D. L. Sparks, red. Chemical Processes in Soils. Madison, WI, USA: Soil Science Society of America, 2005. http://dx.doi.org/10.2136/sssabookser8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Edgar, Thomas F. Optimization of chemical processes. Maidenhead: Mc Graw Hill, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Boudart, Michel. Kinetics of chemical processes. Boston: Butterworth-Heinemann, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

1934-, Tabatabai M. A., i Sparks, Donald L., Ph. D., red. Chemical processes in soils. Madison, Wis: Soil Science Society of America, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Price, Gareth J. Thermodynamics of chemical processes. Oxford: Oxford University Press, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Chemical processes"

1

Vyazovkin, Sergey. "Chemical Processes". W Isoconversional Kinetics of Thermally Stimulated Processes, 163–231. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14175-6_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Paluszek, Michael, i Stephanie Thomas. "Chemical Processes". W MATLAB Recipes, 227–48. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0559-4_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Theodore, Louis, i R. Ryan Dupont. "Chemical Processes". W Chemical Process Industries, 177–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003283454-11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Schlangen, Erik, Gideon P. A. G. van Zijl i Petr Kabele. "Chemical Processes". W RILEM State-of-the-Art Reports, 79–100. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1013-6_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bauer, Siegfried J., i Helmut Lammer. "Chemical Processes". W Planetary Aeronomy, 91–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09362-7_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Paluszek, Michael, i Stephanie Thomas. "Chemical Processes". W MATLAB Recipes, 299–325. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6124-8_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Field, Robert W. "Separation Processes". W Chemical Engineering, 91–112. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09840-8_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wang, Lawrence K., David A. Vaccari, Yan Li i Nazih K. Shammas. "Chemical Precipitation". W Physicochemical Treatment Processes, 141–97. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-820-x:141.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shammas, Nazih K., John Y. Yang, Pao-Chiang Yuan i Yung-Tse Hung. "Chemical Oxidation". W Physicochemical Treatment Processes, 229–70. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-820-x:229.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Torres-Peimbert, S., i M. Peimbert. "Chemical Evolution of Galaxies". W Interstellar Processes, 667–78. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3861-8_24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Chemical processes"

1

Mitchell, Jonathan, John Staniland, Alex Wilson, Andrew Howe, Andrew Clarke, Edmund J. Fordham, John Edwards, Rien Faber i Ron Bouwmeester. "Monitoring Chemical EOR Processes". W SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/169155-ms.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chu, P. C., K. Kyriakidis, S. D. Haeger i M. Ward. "Tidal effect on chemical spills in San Diego Bay". W COASTAL PROCESSES 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/cp090031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Tielens, A. G. G. M. "Deuterium and interstellar chemical processes". W ASTROPHYSICAL IMPLICATIONS OF THE LABORATORY STUDY OF PRESOLAR MATERIALS. ASCE, 1997. http://dx.doi.org/10.1063/1.53335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Povar, Igor. "SYNERGISTIC EFFECTS IN CHEMICAL PROCESSES". W International Symposium "The Environment and the Industry". National Research and Development institute for Industrial Ecology, 2021. http://dx.doi.org/10.21698/simi.2021.ab52.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pollet, P., C. A. Eckert i C. L. Liotta. "Solvents for sustainable chemical processes". W SUSTAINABLE CHEMISTRY 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/chem110031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

LOUKHOVITSKI, B. I., i A. S. SHARIPOV. "QUANTUM CHEMICAL ANALYSIS OF STRUCTURE AND PROPERTIES OF (ALB2)N AND (MGB2)N CLUSTERS". W NONEQUILIBRIUM PROCESSES. TORUS PRESS, 2018. http://dx.doi.org/10.30826/nepcap2018-1-24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

"Se-driven microgel catalysts for oxidation processes". W Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

"Study of diffusion processes in carrot particles". W Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

SHARIPOV, A. S., i A. V. PELEVKIN. "REACTION KINETICS OF CO AND CH4 MOLECULES WITH O2 IN EXCITED ELECTRONIC STATES: QUANTUM CHEMICAL STUDY". W NONEQUILIBRIUM PROCESSES. TORUS PRESS, 2018. http://dx.doi.org/10.30826/nepcap2018-1-03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wolfrum, J. "Elementary chemical processes in reactive flows". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.mc1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Chemical processes"

1

Williams, Skip, i Dale J. Levandier. Chemical Processes in the Space Environment. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1999. http://dx.doi.org/10.21236/ada372855.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Law, Chung K. Physical and Chemical Processes in Flames. Fort Belvoir, VA: Defense Technical Information Center, luty 2004. http://dx.doi.org/10.21236/ada422029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Roberts, William L. Chemical and Physical Processes of Combustion. Fort Belvoir, VA: Defense Technical Information Center, październik 2000. http://dx.doi.org/10.21236/ada384120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

PHELAN, JAMES M. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection. Office of Scientific and Technical Information (OSTI), maj 2002. http://dx.doi.org/10.2172/800794.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Barton, Paul I., i Lawrence B. Evans. Synthesis and optimization of integrated chemical processes. Office of Scientific and Technical Information (OSTI), kwiecień 2002. http://dx.doi.org/10.2172/807068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Castleman, A. W. Jr. Radon: Chemical and physical processes associated with its distribution. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/7175940.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mojdeh Delshad, Gary A. Pope i Kamy Sepehrnoori. A Framework to Design and Optimize Chemical Flooding Processes. Office of Scientific and Technical Information (OSTI), sierpień 2006. http://dx.doi.org/10.2172/896545.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mojdeh Delshad i Gary A. Pope Kamy Sepehrnoori. A Framework to Design and Optimize Chemical Flooding Processes. Office of Scientific and Technical Information (OSTI), sierpień 2006. http://dx.doi.org/10.2172/920369.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Banerjee, Sibashis, Alvin Chen, Rutton Patel, Dale Snider, Ken Williams, Timothy O'Hern i Paul Tortora. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds. Office of Scientific and Technical Information (OSTI), luty 2008. http://dx.doi.org/10.2172/924394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Schwartz, Justin. YBCO Coated Conductor Development by Non-Vacuum Chemical Processes. Fort Belvoir, VA: Defense Technical Information Center, listopad 2004. http://dx.doi.org/10.21236/ada434102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii