Gotowa bibliografia na temat „Chemical Process Modeling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Chemical Process Modeling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Chemical Process Modeling"
Byun, Ki Ryang, Jeong Won Kang, Ki Oh Song i Ho Jung Hwang. "Atomic Scale Modeling of Chemical Mechanical Polishing Process". Journal of the Korean Institute of Electrical and Electronic Material Engineers 18, nr 5 (1.05.2005): 414–22. http://dx.doi.org/10.4313/jkem.2005.18.5.414.
Pełny tekst źródłaTiong, Low Soon, i Arshad Ahmad. "A Hybrid Model for Chemical Process Modeling". IFAC Proceedings Volumes 30, nr 25 (wrzesień 1997): 163–68. http://dx.doi.org/10.1016/s1474-6670(17)41318-8.
Pełny tekst źródłaBhat, N. V., P. A. Minderman, T. McAvoy i N. S. Wang. "Modeling chemical process systems via neural computation". IEEE Control Systems Magazine 10, nr 3 (kwiecień 1990): 24–30. http://dx.doi.org/10.1109/37.55120.
Pełny tekst źródłaBILIAIEV, М. М., V. V. BILIAIEVA, O. V. BERLOV, V. A. KOZACHYNA i Z. M. YAKUBOVSKA. "MATHEMATICAL MODELING OF UNSTATIONARY AIR POLLUTION PROCESS". Ukrainian Journal of Civil Engineering and Architecture, nr 3 (015) (24.06.2023): 13–19. http://dx.doi.org/10.30838/j.bpsacea.2312.140723.13.949.
Pełny tekst źródłaDong, Gao, Xu Xin, Zhang Beike, Ma Xin i Wu Chongguang. "A Framework for Agent-based Chemical Process Modeling". Journal of Applied Sciences 13, nr 17 (15.08.2013): 3490–96. http://dx.doi.org/10.3923/jas.2013.3490.3496.
Pełny tekst źródłaBogomolov, B. B., E. D. Bykov, V. V. Men’shikov i A. M. Zubarev. "Organizational and technological modeling of chemical process systems". Theoretical Foundations of Chemical Engineering 51, nr 2 (marzec 2017): 238–46. http://dx.doi.org/10.1134/s0040579517010043.
Pełny tekst źródłaNie, Miaomiao, Jing Tan, Wen-Sheng Deng i Yue-Feng Su. "Modeling Investigation of Concurrent-flow Chemical Extraction Process". Journal of Physics: Conference Series 1284 (sierpień 2019): 012024. http://dx.doi.org/10.1088/1742-6596/1284/1/012024.
Pełny tekst źródłaGao, Li, i Norman W. Loney. "Evolutionary polymorphic neural network in chemical process modeling". Computers & Chemical Engineering 25, nr 11-12 (listopad 2001): 1403–10. http://dx.doi.org/10.1016/s0098-1354(01)00708-6.
Pełny tekst źródłaGau, Chao-Yang, i Mark A. Stadtherr. "New interval methodologies for reliable chemical process modeling". Computers & Chemical Engineering 26, nr 6 (czerwiec 2002): 827–40. http://dx.doi.org/10.1016/s0098-1354(02)00005-4.
Pełny tekst źródłaMcBride, Kevin, i Kai Sundmacher. "Overview of Surrogate Modeling in Chemical Process Engineering". Chemie Ingenieur Technik 91, nr 3 (3.01.2019): 228–39. http://dx.doi.org/10.1002/cite.201800091.
Pełny tekst źródłaRozprawy doktorskie na temat "Chemical Process Modeling"
Shi, Ruijie. "Subspace identification methods for process dynamic modeling /". *McMaster only, 2001.
Znajdź pełny tekst źródłaNarisaranukul, Narintr. "Modeling and analysis of the chemical milling process". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43425.
Pełny tekst źródłaSinangil, Mehmet Selcuk. "Modeling and control on an industrial polymerization process". Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10150.
Pełny tekst źródłaJohnston, Lloyd Patrick Murphy. "Probability based approaches to process data modeling and rectifictaion". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10913.
Pełny tekst źródłaKoulouris, Alexandros. "Multiresolution learning in nonlinear dynamic process modeling and control". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11376.
Pełny tekst źródłaBohn, Douglas (Douglas Gorman) 1970. "Computer modeling of a continuous manufacturing process". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47557.
Pełny tekst źródłaIncludes bibliographical references.
by Douglas Bohn.
S.M.
Lai, Jiun-Yu. "Mechanics, mechanisms, and modeling of the chemical mechanical polishing process". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8860.
Pełny tekst źródłaIncludes bibliographical references.
The ever-increasing demand for high-performance microelectronic devices has motivated the semiconductor industry to design and manufacture Ultra-Large-Scale Integrated (ULSI) circuits with smaller feature size, higher resolution, denser packing, and multi-layer interconnects. The ULSI technology places stringent demands on global planarity of the Interlevel Dielectric (ILD) layers. Compared with other planarization techniques, the Chemical Mechanical Polishing (CMP) process produces excellent local and global planarization at low cost. It is thus widely adopted for planarizing inter-level dielectric (silicon dioxide) layers. Moreover, CMP is a critical process for fabricating the Cu damascene patterns, low-k dielectrics, and shallow isolated trenches. The wide range of materials to be polished concurrently or sequentially, however, increases the complexity of CMP and necessitates an understanding of the process fundamentals for optimal process design. This thesis establishes a theoretical framework to relate the process parameters to the different wafer/pad contact modes to study the behavior of wafer-scale polishing. Several models of polishing - microcutting, brittle fracture, surface melting and burnishing - are reviewed. Blanket wafers coated with a wide range of materials are polished to verify the models. Plastic deformation is identified as the dominant mechanism of material removal in fine abrasive polishing.
(cont.) Additionally, contact mechanics models, which relate the pressure distribution to the pattern geometry and pad elastic properties, explain the die-scale variation of material removal rate (MRR) on pattern geometry. The pad displacement into low features of submicron lines is less than 0.1 nm. Hence the applied load is only carried by the high features, and the pressure on high features increases with the area fraction of interconnects. Experiments study the effects of pattern geometry on the rates of pattern planarization, oxide overpolishing and Cu dishing. It was observed that Cu dishing of submicron features is less than 20 nm and contributes less to surface non-uniformity than does oxide overpolishing. Finally, a novel in situ detection technique, based on the change of the reflectance of the patterned surface at different polishing stages, is developed to detect the process endpoint and minimize overpolishing. Models that employ light scattering theory and statistical treatment correlate the sampled reflectance with the surface topography and Cu area fraction for detecting the process regime and endpoint. The experimental results agree well with the endpoint detection schemes predicted by the models.
by Jiun-Yu Lai.
Ph.D.
Bakshi, Bhavik Ramesh. "Multi-resolution methods for modeling, analysis and control of chemical process operations". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13203.
Pełny tekst źródłaBryden, Michelle D. (Michelle Denise). "Macrotransport process in branching networks : modeling convective-diffusive phenomena in the lung". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33514.
Pełny tekst źródłaJi, Qingjun. "Mathematical modeling of carbon black process from coal". Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1172255200.
Pełny tekst źródłaKsiążki na temat "Chemical Process Modeling"
Denn, Morton M. Process modeling. New York: Longman, 1986.
Znajdź pełny tekst źródłaProcess modeling. Harlow: Longman Scientific & Technical, 1987.
Znajdź pełny tekst źródłaGeorgiadis, Michael C., Julio R. Banga i Efstratios N. Pistikopoulos. Dynamic process modeling. Weinheim: Wiley-VCH, 2011.
Znajdź pełny tekst źródłaProcess dynamics: Modeling, analysis, and simulation. Upper Saddle River, N.J: Prentice Hall PTR, 1998.
Znajdź pełny tekst źródłaGeorgiadis, Michael C. Dynamic process modeling. Weinheim: Wiley-VCH, 2011.
Znajdź pełny tekst źródła1940-, Ray W. Harmon, red. Process dynamics, modeling, and control. New York: Oxford University Press, 1994.
Znajdź pełny tekst źródłaProcess modeling, simulation, and control for chemical engineers. Wyd. 2. New York: McGraw-Hill, 1990.
Znajdź pełny tekst źródłaE, Schiesser W., red. Dynamic modeling of transport process systems. San Diego: Academic Press, 1992.
Znajdź pełny tekst źródłaUpreti, Simant Ranjan. Process Modeling and Simulation for Chemical Engineers. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118914670.
Pełny tekst źródłaGhasem, Nayef. Modeling and Simulation of Chemical Process Systems. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22487.
Pełny tekst źródłaCzęści książek na temat "Chemical Process Modeling"
am Ende, Mary T., William Ketterhagen, Andrew Prpich, Pankaj Doshi, Salvador García-Muñoz i Rahul Bharadwajh. "DRUG PRODUCT PROCESS MODELING". W Chemical Engineering in the Pharmaceutical Industry, 489–525. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119600800.ch70.
Pełny tekst źródłaSharma, Shivom, i G. P. Rangaiah. "Mathematical Modeling, Simulation and Optimization for Process Design". W Chemical Process Retrofitting and Revamping, 97–127. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119016311.ch4.
Pełny tekst źródłaSimpson, Ricardo, i Sudhir K. Sastry. "Fundamentals of Mathematical Modeling, Simulation, and Process Control". W Chemical and Bioprocess Engineering, 245–60. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9126-2_9.
Pełny tekst źródłaChen, Chau-Chyun. "Molecular Thermodynamics for Pharmaceutical Process Modeling and Simulation". W Chemical Engineering in the Pharmaceutical Industry, 505–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470882221.ch27.
Pełny tekst źródłaGhasem, Nayef. "Introduction". W Modeling and Simulation of Chemical Process Systems, 1–38. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22487-1.
Pełny tekst źródłaGhasem, Nayef. "Lumped Parameter Systems". W Modeling and Simulation of Chemical Process Systems, 39–105. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22487-2.
Pełny tekst źródłaGhasem, Nayef. "Theory and Applications of Distributed Systems". W Modeling and Simulation of Chemical Process Systems, 107–53. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22487-3.
Pełny tekst źródłaGhasem, Nayef. "Computational Fluid Dynamics". W Modeling and Simulation of Chemical Process Systems, 155–221. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22487-4.
Pełny tekst źródłaGhasem, Nayef. "Mass Transport of Distributed Systems". W Modeling and Simulation of Chemical Process Systems, 223–72. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22487-5.
Pełny tekst źródłaGhasem, Nayef. "Heat Transfer Distributed Parameter Systems". W Modeling and Simulation of Chemical Process Systems, 273–361. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22487-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Chemical Process Modeling"
Baharev, Ali, i Arnold Neumaier. "Chemical Process Modeling in Modelica". W 9th International MODELICA Conference, Munich, Germany. Linköping University Electronic Press, 2012. http://dx.doi.org/10.3384/ecp12076955.
Pełny tekst źródłaR. Stoyanov, Stanislav, i Andriy Kovalenko. "Multiscale Computational Modeling: From Heavy Petroleum to Biomass Valorization". W Annual International Conference on Chemistry, Chemical Engineering and Chemical Process. Global Science & Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2301-3761_ccecp15.48.
Pełny tekst źródłaYu, Wen, i Francisco J. Pineda. "Chemical process modeling with multiple neural networks". W 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7076515.
Pełny tekst źródłaKamchaddaskorn, Atthadej, Nalinee Mukdasanit i Thongchai Srinophakun. "Process Modeling and Simulation of Cyclohexanone Production". W The 3rd World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2017. http://dx.doi.org/10.11159/iccpe17.118.
Pełny tekst źródłaLin, Po Ting, Yogesh Jaluria i Hae Chang Gea. "Parametric Modeling and Optimization of Chemical Vapor Deposition Process". W ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-50054.
Pełny tekst źródłaZographos, Nikolas, Christoph Zechner, Pedro Castrillo i Ignacio Martin-Bragado. "Process modeling of chemical and stress effects in SiGe". W ION IMPLANTATION TECHNOLOGY 2012: Proceedings of the 19th International Conference on Ion Implantation Technology. AIP, 2012. http://dx.doi.org/10.1063/1.4766526.
Pełny tekst źródłaChojnowski, Krystian, Piotr Wasilewski i Rafał Grądzki. "Movement modeling of mobile robot in MegaSumo category". W 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). Author(s), 2018. http://dx.doi.org/10.1063/1.5066472.
Pełny tekst źródłaShao, Hua, Panpan Lai, Junjie Li, Guobin Bai, Qi Yan, Junfeng Li, Tao Yang, Rui Chen i Yayi Wei. "Modeling of SiNx growth by chemical vapor deposition in nanosheet indentation". W Advanced Etch Technology and Process Integration for Nanopatterning XII, redaktorzy Efrain Altamirano-Sánchez i Nihar Mohanty. SPIE, 2023. http://dx.doi.org/10.1117/12.2658152.
Pełny tekst źródła"Computational Fluid Dynamics Modeling of Mixing Process for Two-Components Mixture in the Large Scale Reactor". W Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.038.
Pełny tekst źródłaRao, S. Rama, C. R. M. Sravan, V. Pandu Ranga i G. Padmanabhan. "Fuzzy logic-based forward modeling of Electro Chemical Machining process". W 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE, 2009. http://dx.doi.org/10.1109/nabic.2009.5393708.
Pełny tekst źródłaRaporty organizacyjne na temat "Chemical Process Modeling"
Martino, C., D. Herman, J. Pike i T. Peters. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION. Office of Scientific and Technical Information (OSTI), czerwiec 2014. http://dx.doi.org/10.2172/1134065.
Pełny tekst źródłaXu, Dikai, Yu-Yen Chen, Jianhua Pan, Yitao Zhang, Dawei Wang, Yaswanth Pottimurthy, Thomas J. Flynn i in. Heat Integration Optimization and Dynamic Modeling Investigation for Advancing the Coal-Direct Chemical Looping Process. Office of Scientific and Technical Information (OSTI), kwiecień 2020. http://dx.doi.org/10.2172/1608820.
Pełny tekst źródłaNechypurenko, Pavlo, Tetiana Selivanova i Maryna Chernova. Using the Cloud-Oriented Virtual Chemical Laboratory VLab in Teaching the Solution of Experimental Problems in Chemistry of 9th Grade Students. [б. в.], czerwiec 2019. http://dx.doi.org/10.31812/123456789/3175.
Pełny tekst źródłaMorkun, Volodymyr, Natalia Morkun, Andrii Pikilnyak, Serhii Semerikov, Oleksandra Serdiuk i Irina Gaponenko. The Cyber-Physical System for Increasing the Efficiency of the Iron Ore Desliming Process. CEUR Workshop Proceedings, kwiecień 2021. http://dx.doi.org/10.31812/123456789/4373.
Pełny tekst źródłaSeale, Maria, R. Salter, Natàlia Garcia-Reyero, i Alicia Ruvinsky. A fuzzy epigenetic model for representing degradation in engineered systems. Engineer Research and Development Center (U.S.), wrzesień 2022. http://dx.doi.org/10.21079/11681/45582.
Pełny tekst źródłaBanks, H. T. Modeling Validation and Control of Advanced Chemical Vapor Deposition Processes. Fort Belvoir, VA: Defense Technical Information Center, listopad 2000. http://dx.doi.org/10.21236/ada384359.
Pełny tekst źródłaMojdeh Delshad, Gary A. Pope i Kamy Sepehrnoori. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs. Office of Scientific and Technical Information (OSTI), wrzesień 2007. http://dx.doi.org/10.2172/927590.
Pełny tekst źródłaZhylenko, Tetyana I., Ivan S. Koziy, Vladyslav S. Bozhenko i Irina A. Shuda. Using a web application to realize the effect of AR in assessing the environmental impact of emissions source. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4408.
Pełny tekst źródłaErsoy, Daniel. 693JK31810003 Non-Destructive Tools for Surface to Bulk Correlations of Yield Strength Toughness and Chemistry. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luty 2022. http://dx.doi.org/10.55274/r0012206.
Pełny tekst źródłaYou, Siming, Ondřej Mašek, Bauyrzhan Biakhmetov, Simon Ascher, Sudeshna Lahiri, PreetiChaturvedi Bhargava, Thallada Bhaskar, Supravat Sarangi i Sunita Varjani. Feasibility and impacts of Bioenergy Trigeneration systems (BioTrig) in disadvantaged rural areas in India. University of Glasgow, sierpień 2023. http://dx.doi.org/10.36399/gla.pubs.305660.
Pełny tekst źródła