Artykuły w czasopismach na temat „Chemical explosive mode analysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chemical explosive mode analysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
LU, T. F., C. S. YOO, J. H. CHEN i C. K. LAW. "Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis". Journal of Fluid Mechanics 652 (19.05.2010): 45–64. http://dx.doi.org/10.1017/s002211201000039x.
Pełny tekst źródłaXu, Chao, Ji-Woong Park, Chun Sang Yoo, Jacqueline H. Chen i Tianfeng Lu. "Identification of premixed flame propagation modes using chemical explosive mode analysis". Proceedings of the Combustion Institute 37, nr 2 (2019): 2407–15. http://dx.doi.org/10.1016/j.proci.2018.07.069.
Pełny tekst źródłaWu, Wantong, Ying Piao, Qing Xie i Zhuyin Ren. "Flame Diagnostics with a Conservative Representation of Chemical Explosive Mode Analysis". AIAA Journal 57, nr 4 (kwiecień 2019): 1355–63. http://dx.doi.org/10.2514/1.j057994.
Pełny tekst źródłaShan, Ruiqin, Chun Sang Yoo, Jacqueline H. Chen i Tianfeng Lu. "Computational diagnostics for n-heptane flames with chemical explosive mode analysis". Combustion and Flame 159, nr 10 (październik 2012): 3119–27. http://dx.doi.org/10.1016/j.combustflame.2012.05.012.
Pełny tekst źródłaXu, Chao, Muhsin M. Ameen, Sibendu Som, Jacqueline H. Chen, Zhuyin Ren i Tianfeng Lu. "Dynamic adaptive combustion modeling of spray flames based on chemical explosive mode analysis". Combustion and Flame 195 (wrzesień 2018): 30–39. http://dx.doi.org/10.1016/j.combustflame.2018.05.019.
Pełny tekst źródłaWang, Lei, Yong Jiang i Rong Qiu. "Chemical Explosive Mode Analysis for Local Reignition Scenarios in H2/N2 Turbulent Diffusion Flames". Energy & Fuels 31, nr 9 (6.09.2017): 9939–49. http://dx.doi.org/10.1021/acs.energyfuels.6b03175.
Pełny tekst źródłaHu, Yupeng, Jiawen Liu, Qiang Wan, Meng Zhang i Minghai Li. "Numerical Study of PBX 9501 Explosive Combustion Process in Confined Space". Processes 11, nr 7 (10.07.2023): 2056. http://dx.doi.org/10.3390/pr11072056.
Pełny tekst źródłaCifuentes, Luis, Ehsan Fooladgar i Christophe Duwig. "Chemical Explosive Mode Analysis for a Jet-in-Hot-Coflow burner operating in MILD combustion". Fuel 232 (listopad 2018): 712–23. http://dx.doi.org/10.1016/j.fuel.2018.05.171.
Pełny tekst źródłaLuo, Zhaoyu, Chun Sang Yoo, Edward S. Richardson, Jacqueline H. Chen, Chung K. Law i Tianfeng Lu. "Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow". Combustion and Flame 159, nr 1 (styczeń 2012): 265–74. http://dx.doi.org/10.1016/j.combustflame.2011.05.023.
Pełny tekst źródłaSzachogluchowicz, Ireneusz, Lucjan Sniezek, Krzysztof Grzelak, Heorhiy Sulym, Ihor Turchyn i Iaroslav Pasternak. "The Analytical Model of Stress Zone Formation of Ti4Al4V/AA1050/AA2519 Laminate Produced by Explosive Bonding". Metals 9, nr 7 (12.07.2019): 779. http://dx.doi.org/10.3390/met9070779.
Pełny tekst źródłaAn, Jiangtao, Yong Jiang, Meijuan Ye i Rong Qiu. "One-dimensional turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames". International Journal of Hydrogen Energy 38, nr 18 (czerwiec 2013): 7528–38. http://dx.doi.org/10.1016/j.ijhydene.2013.04.032.
Pełny tekst źródłaXu, Chao, Alexei Y. Poludnenko, Xinyu Zhao, Hai Wang i Tianfeng Lu. "Structure of strongly turbulent premixed n-dodecane–air flames: Direct numerical simulations and chemical explosive mode analysis". Combustion and Flame 209 (listopad 2019): 27–40. http://dx.doi.org/10.1016/j.combustflame.2019.07.027.
Pełny tekst źródłaJeong, Seung-Min, i Jeong-Yeol Choi. "Combined Diagnostic Analysis of Dynamic Combustion Characteristics in a Scramjet Engine". Energies 13, nr 15 (4.08.2020): 4029. http://dx.doi.org/10.3390/en13154029.
Pełny tekst źródłaKhalil, Ahmed T., Dimitris M. Manias, Efstathios-Al Tingas, Dimitrios C. Kyritsis i Dimitris A. Goussis. "Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH3–H2O2/Air Mixtures". Energies 12, nr 23 (21.11.2019): 4422. http://dx.doi.org/10.3390/en12234422.
Pełny tekst źródłaGorev, V. A. "Modes of Explosive Combustion during Emergency Explosions of the Gas Clouds in the Open Space". Occupational Safety in Industry, nr 8 (sierpień 2022): 7–12. http://dx.doi.org/10.24000/0409-2961-2022-8-7-12.
Pełny tekst źródłaLi, Shun Ping, Shun Shan Feng, Yong Xiang Dong i Yun Chen. "Research on the Relationship between the Impact Explosive Temperature and Mass Ratio of PTFE/Al Reactive Material". Advanced Materials Research 591-593 (listopad 2012): 1017–20. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.1017.
Pełny tekst źródłaShashin, A., R. Sheps, A. Seminenko i V. Minko. "LOCAL EXHAUST VENTILATION WITH EJECTION OF EXPLOSIVE SUBSTANCES AND RECIRCULATION OF PURIFIED AIR". Bulletin of Belgorod State Technological University named after. V. G. Shukhov 6, nr 2 (5.03.2021): 28–37. http://dx.doi.org/10.34031/2071-7318-2021-6-2-28-37.
Pełny tekst źródłaWang, Lei, Yong Jiang, Longwei Pan, Yu Xia i Rong Qiu. "Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H2/CO/N2 syngas non-premixed flame". International Journal of Hydrogen Energy 41, nr 8 (marzec 2016): 4820–30. http://dx.doi.org/10.1016/j.ijhydene.2016.01.043.
Pełny tekst źródłaWang, Kan, Yang Liu, Hao Wang, Xiaolei Liu, Yu Jiao i Yujian Wu. "Dynamic Process and Damage Evaluation Subject to Explosion Consequences Resulting from a LPG Tank Trailer Accident". Processes 11, nr 5 (16.05.2023): 1514. http://dx.doi.org/10.3390/pr11051514.
Pełny tekst źródłaFedorenko, Gennadiy, Herman Fesenko, Vyacheslav Kharchenko, Ihor Kliushnikov i Ihor Tolkunov. "Robotic-biological systems for detection and identification of explosive ordnance: concept, general structure, and models". Radioelectronic and Computer Systems, nr 2 (25.05.2023): 143–59. http://dx.doi.org/10.32620/reks.2023.2.12.
Pełny tekst źródłaKelasyev, N. G., K. V. Avdeev, D. I. Levin, M. V. Lisanov i V. V. Bobrov. "Models of Concrete and Reinforcement under Explosive Loads". Occupational Safety in Industry, nr 3 (marzec 2023): 14–21. http://dx.doi.org/10.24000/0409-2961-2023-3-14-21.
Pełny tekst źródłaZhou, Dezhi, Hongyuan Zhang i Suo Yang. "A Robust Reacting Flow Solver with Computational Diagnostics Based on OpenFOAM and Cantera". Aerospace 9, nr 2 (14.02.2022): 102. http://dx.doi.org/10.3390/aerospace9020102.
Pełny tekst źródłaDodoulas, Ilias A., i Salvador Navarro-Martinez. "Analysis of extinction in a non-premixed turbulent flame using large eddy simulation and the chemical explosion mode analysis". Combustion Theory and Modelling 19, nr 1 (2.01.2015): 107–29. http://dx.doi.org/10.1080/13647830.2014.993713.
Pełny tekst źródłaKharlamov, Yu A., L. G. Polonsky, N. O. Balytska i S. A. Klymenko. "Innovative Potential of Gas Detonation". Nauka ta innovacii 16, nr 6 (12.06.2020): 105–12. http://dx.doi.org/10.15407/scin16.06.105.
Pełny tekst źródłaKharlamov, Yu A., L. G. Polonsky, N. O. Balytska i S. A. Klymenko. "Innovative Potential of Gas Detonation". Science and innovation 16, nr 6 (listopad 2020): 104–10. http://dx.doi.org/10.15407/scine16.06.104.
Pełny tekst źródłaSkob, Yurii, Yuriy Dreval, Alexey Vasilchenko i Roman Maiboroda. "Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power". Key Engineering Materials 952 (18.08.2023): 121–29. http://dx.doi.org/10.4028/p-st1vet.
Pełny tekst źródłaKrokhalev, A. V., V. O. Kharlamov, D. R. Chernikov, S. V. Kuz’min i V. I. Lysak. "Using explosion loading to obtain coatings of chromium carbide and titanium mixtures in deposition mode". Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya, nr 2 (16.06.2022): 70–78. http://dx.doi.org/10.17073/1997-308x-2022-2-70-78.
Pełny tekst źródłaEades, Robert, i Kyle Perry. "Evaluation of a 38 L Explosive Chamber for Testing Coal Dust Explosibility". Journal of Combustion 2019 (2.09.2019): 1–7. http://dx.doi.org/10.1155/2019/5810173.
Pełny tekst źródłaKulikov, Yevgeny, Gennady Kulikov, Vladimir Apse, Anatoly Shmelev i Nikolay Geraskin. "Computational model and physical and technical factors determining the plutonium proliferation resistance". Nuclear Energy and Technology 4, nr 2 (26.11.2018): 93–97. http://dx.doi.org/10.3897/nucet.4.30525.
Pełny tekst źródłaWu, Yao-Chang, Bin Laiwang i Chi-Min Shu. "Investigation of an Explosion at a Styrene Plant with Alkylation Reactor Feed Furnace". Applied Sciences 9, nr 3 (1.02.2019): 503. http://dx.doi.org/10.3390/app9030503.
Pełny tekst źródłaRatriwardhani, Ratna Ayu, Merry Sunaryo, Octavianus Hutapea i Muslikha Nourma Rhomadhoni. "Application of failure mode effect analysis on hazard identification and risk control". Bali Medical Journal 11, nr 2 (17.08.2022): 892–96. http://dx.doi.org/10.15562/bmj.v11i2.3146.
Pełny tekst źródłaHART, PETER W., CARL HOUTMAN i KOLBY HIRTH. "Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching". TAPPI Journal 12, nr 7 (1.08.2013): 59–65. http://dx.doi.org/10.32964/tj12.7.59.
Pełny tekst źródłaDvořák, Richard, Zdeněk Chobola, Iveta Plšková, Rudolf Hela i Lenka Bodnárová. "Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learning". Materials 16, nr 3 (22.01.2023): 1010. http://dx.doi.org/10.3390/ma16031010.
Pełny tekst źródłaMai, Viet-Chinh, Xuan-Bach Luu, Cong-Binh Dao i Dinh-Viet Le. "Investigate the Structural Response of Ultra High Performance Concrete Column under the High Explosion". Defence Science Journal 71, nr 2 (10.03.2021): 256–64. http://dx.doi.org/10.14429/dsj.71.16427.
Pełny tekst źródłaMishra, Romil, Arvind Kumar Mishra i Bhanwar Singh Choudhary. "High-Speed Motion Analysis-Based Machine Learning Models for Prediction and Simulation of Flyrock in Surface Mines". Applied Sciences 13, nr 17 (1.09.2023): 9906. http://dx.doi.org/10.3390/app13179906.
Pełny tekst źródłaGabhane, Lalit Rajaramji, i NagamalleswaraRao Kanidarapu. "Environmental Risk Assessment Using Neural Network in Liquefied Petroleum Gas Terminal". Toxics 11, nr 4 (7.04.2023): 348. http://dx.doi.org/10.3390/toxics11040348.
Pełny tekst źródłaVoitenko, Yu, Viktoria Vapnichna i O. Voitenko. "ON THE DESTRUCTION AND PREFRACTURING OF SOLID ROCKS UNDER BLASTING IN FORMATION CONDITIONS". Geoengineering, nr 7 (5.12.2022): 7–16. http://dx.doi.org/10.20535/2707-2096.7.2022.267555.
Pełny tekst źródłaOhol, Rajesh B., B. A. Parate i Dineshsingh Thakur. "Plastic Deformation of High Explosive Projectile 155 mm during Gun Launch Conditions using Finite Element Method". Defence Science Journal 72, nr 6 (6.12.2022): 793–800. http://dx.doi.org/10.14429/dsj.72.18197.
Pełny tekst źródłaMcDonald, Kenneth, Derek Sanchez, Kenneth Voet, Ryan Powis, Joshua Norris i Rob Prins. "Developing Fuzzy Cognitive Mapping Techniques for Consequence Analysis of Second and Third Order Effects". Industrial and Systems Engineering Review 3, nr 2 (16.07.2015): 71–81. http://dx.doi.org/10.37266/iser.2015v3i2.pp71-81.
Pełny tekst źródłaXia, Zhiyu, Zhengyi Xu, Dan Li i Jianming Wei. "A Novel Method for Source Tracking of Chemical Gas Leakage: Outlier Mutation Optimization Algorithm". Sensors 22, nr 1 (23.12.2021): 71. http://dx.doi.org/10.3390/s22010071.
Pełny tekst źródłaSydorenko, Yuryi M., Bohdan Jo Semon, Vadim V. Yakovenko, Yevhen V. Ryzhov i Eugene G. Ivanyk. "Spatial Distribution of Mass and Speed on Movement of Two Shrapnel Discs of Variable Thickness in Explosive Load". Defence Science Journal 70, nr 5 (8.10.2020): 479–85. http://dx.doi.org/10.14429/dsj.70.14524.
Pełny tekst źródłaWu, Qian, Xiao Tang, Lei Kong, Xu Dao, Miaomiao Lu, Zirui Liu, Wei Wang i in. "Evaluation and Bias Correction of the Secondary Inorganic Aerosol Modeling over North China Plain in Autumn and Winter". Atmosphere 12, nr 5 (30.04.2021): 578. http://dx.doi.org/10.3390/atmos12050578.
Pełny tekst źródłaCatureba, Rafaela Pedroso, Aldelio Bueno Caldeira i Rodrigo Otávio de Castro Guedes. "Numerical Simulation of the TNT Solidification Process". Defence Science Journal 69, nr 4 (15.07.2019): 336–41. http://dx.doi.org/10.14429/dsj.69.13536.
Pełny tekst źródłaSoma, Venugopal Rao, i Abdul Kalam Shaik. "Femtosecond Filaments for Standoff Detection of Explosives". Defence Science Journal 70, nr 4 (13.07.2020): 359–65. http://dx.doi.org/10.14429/dsj.70.14962.
Pełny tekst źródłaLópez, Luis Rafael, Mabel Mora, Caroline Van der Heyden, Juan Antonio Baeza, Eveline Volcke i David Gabriel. "Model-Based Analysis of Feedback Control Strategies in Aerobic Biotrickling Filters for Biogas Desulfurization". Processes 9, nr 2 (22.01.2021): 208. http://dx.doi.org/10.3390/pr9020208.
Pełny tekst źródłaInfante-Castillo, Ricardo, i Samuel P. Hernández-Rivera. "Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups". Advances in Physical Chemistry 2012 (30.08.2012): 1–11. http://dx.doi.org/10.1155/2012/304686.
Pełny tekst źródłaYe, Congliang, i Qi Zhang. "Optimal Falling Track Design for Twice detonating Fuze of Double event Fuel air Explosive with High Speed". Defence Science Journal 70, nr 4 (13.07.2020): 366–73. http://dx.doi.org/10.14429/dsj.70.14868.
Pełny tekst źródłaSmalii, V., i E. Tolok. "MODEL OF MULTICOMPONENT LIQUID POOL EVAPORATION FORMED DUE ACCIDENTAL SPILLS". Ecological Safety and Balanced Use of Resources, nr 2(26) (5.03.2023): 122–32. http://dx.doi.org/10.31471/2415-3184-2022-2(26)-122-132.
Pełny tekst źródłaBarozzi, Marco, Sabrina Copelli, Martina Silvia Scotton i Vincenzo Torretta. "Application of an Enhanced Version of Recursive Operability Analysis for Combustible Dusts Risk Assessment". International Journal of Environmental Research and Public Health 17, nr 9 (28.04.2020): 3078. http://dx.doi.org/10.3390/ijerph17093078.
Pełny tekst źródłaGórniak, Katarzyna, Tadeusz Szydłak, Piotr Wyszomirski, Adam Gaweł i Małgorzata Niemiec. "Recently Discovered Thick Bentonite Bed Hosted by the Lithothamnium Limestones (Badenian) in the Polish Part of the Carpathian Foredeep: The Evidence for Volcanic Origin". Minerals 11, nr 12 (15.12.2021): 1417. http://dx.doi.org/10.3390/min11121417.
Pełny tekst źródła