Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Chalcogenide Waveguides.

Artykuły w czasopismach na temat „Chalcogenide Waveguides”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chalcogenide Waveguides”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Наливайко, В. И., i М. А. Пономарева. "Оптические решеточно-волноводные сенсоры на основе халькогенидных стекол". Журнал технической физики 126, nr 4 (2019): 523. http://dx.doi.org/10.21883/os.2019.04.47523.182-18.

Pełny tekst źródła
Streszczenie:
AbstractThe operating principle of the optical grating waveguide sensors is considered. The waveguide sensitivity and detection limit of sensors with waveguides of oxide and chalcogenide glasses are compared. The advantages of the grating waveguide sensors with waveguides with a high contrast of refraction indices are shown. The conditions of obtaining a maximum waveguide sensitivity of the grating waveguide sensors are formulated.
Style APA, Harvard, Vancouver, ISO itp.
2

Mushahid, Husain, i Raman Swati. "Chalcogenide Glass Optical Waveguides for Optical Communication". Advanced Materials Research 679 (kwiecień 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.679.41.

Pełny tekst źródła
Streszczenie:
The present research work is focused on fabricating the chalcogenide glass optical waveguides keeping in mind their application in optical communication. The propagation loss of the waveguides is also studied at three different wavelengths. The waveguides were fabricated by dry etching using ECR Plasma etching and the propagation loss is studied using Fabry-Perot technique. The waveguides having loss as low as 0.35 dB/cm at 1.3m is achieved. The technique used to fabricate waveguide is simple and cost effective.
Style APA, Harvard, Vancouver, ISO itp.
3

Luo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li i in. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics". Photonics 9, nr 2 (7.02.2022): 94. http://dx.doi.org/10.3390/photonics9020094.

Pełny tekst źródła
Streszczenie:
The interlayer coupler is one of the critical building blocks for optical interconnect based on multilayer photonic integration to realize light coupling between stacked optical waveguides. However, commonly used coupling strategies, such as evanescent field coupling, usually require a close distance, which could cause undesired interlayer crosstalk. This work presents a novel interlayer slope waveguide coupler based on a multilayer chalcogenide glass photonic platform, enabling light to be directly guided from one layer to another with a large interlayer gap (1 µm), a small footprint (6 × 1 × 0.8 µm3), low propagation loss (0.2 dB at 1520 nm), low device processing temperature, and a high bandwidth, similar to that in a straight waveguide. The proposed interlayer slope waveguide coupler could further promote the development of advanced multilayer integration in 3D optical communications systems.
Style APA, Harvard, Vancouver, ISO itp.
4

Chauvet, Mathieu, Gil Fanjoux, Kien Phan Huy, Virginie Nazabal, Frédéric Charpentier, Thierry Billeton, Georges Boudebs, Michel Cathelinaud i Simon-Pierre Gorza. "Kerr spatial solitons in chalcogenide waveguides". Optics Letters 34, nr 12 (5.06.2009): 1804. http://dx.doi.org/10.1364/ol.34.001804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dyatlov, Mikhail, Philippe Delaye, Laurent Vivien i Nicolas Dubreuil. "Bi-directional spectral broadening measurements for accurate characterisation of nonlinear hybrid integrated waveguides". EPJ Web of Conferences 266 (2022): 01007. http://dx.doi.org/10.1051/epjconf/202226601007.

Pełny tekst źródła
Streszczenie:
The emerging interest in integrated optical technologies raises the need for precise characterisation techniques for waveguides presenting nonlinearities. Here we propose a non-interferometric measurement to accurately characterise the Kerr contribution in hybrid waveguides and illustrate its performances using SiN waveguides with a GSS chalcogenide top-layer. The sensitivity of our technique in terms of nonlinear phase reaches 10 mrad and its accuracy makes possible to extract the nonlinear contributions from the top-layer.
Style APA, Harvard, Vancouver, ISO itp.
6

Anne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite i in. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing". Sensors 9, nr 9 (15.09.2009): 7398–411. http://dx.doi.org/10.3390/s90907398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Huang, Ying, Perry Ping Shum, Feng Luan i Ming Tang. "Raman-Assisted Wavelength Conversion in Chalcogenide Waveguides". IEEE Journal of Selected Topics in Quantum Electronics 18, nr 2 (marzec 2012): 646–53. http://dx.doi.org/10.1109/jstqe.2011.2128856.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Curry, R. J., A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak i J. V. Badding. "Chalcogenide Glass Thin Films and Planar Waveguides". Journal of the American Ceramic Society 88, nr 9 (wrzesień 2005): 2451–55. http://dx.doi.org/10.1111/j.1551-2916.2005.00349.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zha, Yunlai, Pao Tai Lin, Lionel Kimerling, Anu Agarwal i Craig B. Arnold. "Inverted-Rib Chalcogenide Waveguides by Solution Process". ACS Photonics 1, nr 3 (21.02.2014): 153–57. http://dx.doi.org/10.1021/ph400107s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Andriesh, A. M. "Properties of chalcogenide glasses for optical waveguides". Journal of Non-Crystalline Solids 77-78 (grudzień 1985): 1219–28. http://dx.doi.org/10.1016/0022-3093(85)90878-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Petkova, Tamara, Vania Ilcheva, P. Ilchev i P. Petkov. "Ge-Chalcogenide Glasses – Properties and Application as Optical Material". Key Engineering Materials 538 (styczeń 2013): 316–19. http://dx.doi.org/10.4028/www.scientific.net/kem.538.316.

Pełny tekst źródła
Streszczenie:
The great interest toward chalcogenide materials is due to the simple technology of preparation in bulk forms and thin films; good thermal and mechanical properties; transparency and photo-sensibility in the IR spectral range. These advantages determine the possibilities for potential application of these materials like optical storage media, memory devices, optical elements (lenses, waveguides, gratings, etc). The idea of present study is to trace the impact of gallium or indium as metal introduction on the behaviors of the glasses from germanium - chalcogenide system.
Style APA, Harvard, Vancouver, ISO itp.
12

Zhang, Lin, Anuradha M. Agarwal, Lionel C. Kimerling i Jurgen Michel. "Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared". Nanophotonics 3, nr 4-5 (1.08.2014): 247–68. http://dx.doi.org/10.1515/nanoph-2013-0020.

Pełny tekst źródła
Streszczenie:
AbstractGroup IV photonics hold great potential for nonlinear applications in the near- and mid-infrared (IR) wavelength ranges, exhibiting strong nonlinearities in bulk materials, high index contrast, CMOS compatibility, and cost-effectiveness. In this paper, we review our recent numerical work on various types of silicon and germanium waveguides for octave-spanning ultrafast nonlinear applications. We discuss the material properties of silicon, silicon nitride, silicon nano-crystals, silica, germanium, and chalcogenide glasses including arsenic sulfide and arsenic selenide to use them for waveguide core, cladding and slot layer. The waveguides are analyzed and improved for four spectrum ranges from visible, near-IR to mid-IR, with material dispersion given by Sellmeier equations and wavelength-dependent nonlinear Kerr index taken into account. Broadband dispersion engineering is emphasized as a critical approach to achieving on-chip octave-spanning nonlinear functions. These include octave-wide supercontinuum generation, ultrashort pulse compression to sub-cycle level, and mode-locked Kerr frequency comb generation based on few-cycle cavity solitons, which are potentially useful for next-generation optical communications, signal processing, imaging and sensing applications.
Style APA, Harvard, Vancouver, ISO itp.
13

Baker, Neil J., Ho W. Lee, Ian C. Littler, C. Martijn de Sterke, Benjamin J. Eggleton, Duk-Yong Choi, Steve Madden i Barry Luther-Davies. "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides". Optics Express 14, nr 20 (2006): 9451. http://dx.doi.org/10.1364/oe.14.009451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Lee, Michael W., Christian Grillet, Cameron L. C. Smith, David J. Moss, Benjamin J. Eggleton, Darren Freeman, Barry Luther-Davies i in. "Photosensitive post tuning of chalcogenide photonic crystal waveguides". Optics Express 15, nr 3 (2007): 1277. http://dx.doi.org/10.1364/oe.15.001277.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Mirnaziry, Sayyed Reza, Christian Wolff, M. J. Steel, Benjamin J. Eggleton i Christopher G. Poulton. "Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides". Optics Express 24, nr 5 (25.02.2016): 4786. http://dx.doi.org/10.1364/oe.24.004786.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Gai, Xin, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla i Barry Luther-Davies. "Progress in optical waveguides fabricated from chalcogenide glasses". Optics Express 18, nr 25 (6.12.2010): 26635. http://dx.doi.org/10.1364/oe.18.026635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Finsterbusch, K., N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden i B. Luther-Davis. "Long-period gratings in chalcogenide (As2S3) rib waveguides". Electronics Letters 42, nr 19 (2006): 1094. http://dx.doi.org/10.1049/el:20062257.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Canciamilla, Antonio, Francesco Morichetti, Stefano Grillanda, Philippe Velha, Marc Sorel, Vivek Singh, Anu Agarwal, Lionel C. Kimerling i Andrea Melloni. "Photo-induced trimming of chalcogenide-assisted silicon waveguides". Optics Express 20, nr 14 (27.06.2012): 15807. http://dx.doi.org/10.1364/oe.20.015807.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Serna, Samuel, Hongtao Lin, Carlos Alonso-Ramos, Anupama Yadav, Xavier Le Roux, Kathleen Richardson, Eric Cassan, Nicolas Dubreuil, Juejun Hu i Laurent Vivien. "Nonlinear optical properties of integrated GeSbS chalcogenide waveguides". Photonics Research 6, nr 5 (13.04.2018): B37. http://dx.doi.org/10.1364/prj.6.000b37.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Zhang, Yanbing, Jochen Schröder, Chad Husko, Simon Lefrancois, Duk-Yong Choi, Steve Madden, Barry Luther-Davies i Benjamin J. Eggleton. "Pump-degenerate phase-sensitive amplification in chalcogenide waveguides". Journal of the Optical Society of America B 31, nr 4 (12.03.2014): 780. http://dx.doi.org/10.1364/josab.31.000780.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ta’eed, Vahid G., Mehrdad Shokooh-Saremi, Libin Fu, David J. Moss, Martin Rochette, Ian C. M. Littler, Benjamin J. Eggleton, Yinlan Ruan i Barry Luther-Davies. "Integrated all-optical pulse regenerator in chalcogenide waveguides". Optics Letters 30, nr 21 (1.11.2005): 2900. http://dx.doi.org/10.1364/ol.30.002900.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Shiryaev, Vladimir S., Alexander P. Velmuzhov, Tatiana V. Kotereva, Elizaveta A. Tyurina, Maksim V. Sukhanov i Ella V. Karaksina. "Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing". Fibers 11, nr 6 (16.06.2023): 54. http://dx.doi.org/10.3390/fib11060054.

Pełny tekst źródła
Streszczenie:
Recent results of research of passive and active optical waveguides made of high-purity chalcogenide glasses for middle infrared fiberoptic evanescent wave spectroscopy of liquid and gaseous substances are presented. On the basis of selenide and telluride glass fibers, novel types of highly sensitive fiber probes are developed. On the basis of Pr(3+)- and Tb(3+)-doped Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, the 4.2–6 μm wavelength radiation sources are created for all-fiber sensor systems. Successful testing of chalcogenide glass fiber sensors for the analysis of some liquid and gaseous mixtures was carried out.
Style APA, Harvard, Vancouver, ISO itp.
23

Robert, Bruno, Rémi Pélissier, Raphaël Escalier, Ahmad Mehdi, Csilla Gergely i Caroline Vigreux. "Strategies for selective functionalization of amorphous chalcogenide rib waveguides". Optical Materials 127 (maj 2022): 112327. http://dx.doi.org/10.1016/j.optmat.2022.112327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Song, Jingcui, Xiaojie Guo, Wentao Peng, Jingshun Pan, Lei Wan, Tianhua Feng, Siqing Zeng i in. "Stimulated Brillouin Scattering in Low-Loss Ge25Sb10S65 Chalcogenide Waveguides". Journal of Lightwave Technology 39, nr 15 (sierpień 2021): 5048–53. http://dx.doi.org/10.1109/jlt.2021.3078722.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Spälter, S., H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong i R. E. Slusher. "Strong self-phase modulation in planar chalcogenide glass waveguides". Optics Letters 27, nr 5 (1.03.2002): 363. http://dx.doi.org/10.1364/ol.27.000363.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Gmachl, C., H. Y. Hwang, R. Paiella, D. L. Sivco, J. N. Baillargeon, F. Capasso i A. Y. Cho. "Quantum cascade lasers with low-loss chalcogenide lateral waveguides". IEEE Photonics Technology Letters 13, nr 3 (2001): 182–84. http://dx.doi.org/10.1109/68.914314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

McMillen, Ben, Mingshan Li, Sheng Huang, Botao Zhang i Kevin P. Chen. "Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass". Optics Letters 39, nr 12 (10.06.2014): 3579. http://dx.doi.org/10.1364/ol.39.003579.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

DeCorby, R. G., N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin i S. O. Kasap. "High index contrast waveguides in chalcogenide glass and polymer". IEEE Journal of Selected Topics in Quantum Electronics 11, nr 2 (marzec 2005): 539–46. http://dx.doi.org/10.1109/jstqe.2005.845610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Suzuki, Keijiro, Yohei Hamachi i Toshihiko Baba. "Fabrication and characterization of chalcogenide glass photonic crystal waveguides". Optics Express 17, nr 25 (23.11.2009): 22393. http://dx.doi.org/10.1364/oe.17.022393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Xiong, C., L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe i B. J. Eggleton. "Quantum-correlated photon pair generation in chalcogenide As_2S_3 waveguides". Optics Express 18, nr 15 (16.07.2010): 16206. http://dx.doi.org/10.1364/oe.18.016206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Taleb Bendiab, Anis, Malick Bathily, Caroline Vigreux, Raphaël Escalier, Annie Pradel, Raphaël K. Kribich i Ryad Bendoula. "Chalcogenide rib waveguides for the characterization of spray deposits". Optical Materials 86 (grudzień 2018): 298–303. http://dx.doi.org/10.1016/j.optmat.2018.10.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Rivero, C., P. Sharek, W. Li, K. Richardson, A. Schulte, G. Braunstein, R. Irwin, V. Hamel, K. Turcotte i E. Knystautas. "Structural analysis of chalcogenide waveguides using Rutherford backscattering spectroscopy". Thin Solid Films 425, nr 1-2 (luty 2003): 59–67. http://dx.doi.org/10.1016/s0040-6090(02)01139-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Tremblay, Jean-Étienne, Marcin Malinowski, Kathleen A. Richardson, Sasan Fathpour i Ming C. Wu. "Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides". Optics Express 26, nr 16 (3.08.2018): 21358. http://dx.doi.org/10.1364/oe.26.021358.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ganjoo, A., H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding i C. G. Pantano. "Planar chalcogenide glass waveguides for IR evanescent wave sensors". Journal of Non-Crystalline Solids 352, nr 6-7 (maj 2006): 584–88. http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Jean, Philippe, Alexandre Douaud, Vincent Michaud-Belleau, Sandra Helena Messaddeq, Jérôme Genest, Sophie LaRochelle, Younès Messaddeq i Wei Shi. "Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides". Optics Letters 45, nr 10 (13.05.2020): 2830. http://dx.doi.org/10.1364/ol.392879.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Yan, Kunlun, Khu Vu i Steve Madden. "Internal gain in Er-doped As_2S_3 chalcogenide planar waveguides". Optics Letters 40, nr 5 (24.02.2015): 796. http://dx.doi.org/10.1364/ol.40.000796.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Yan, Kunlun, Khu Vu, Rongping Wang i Steve Madden. "Greater than 50% inversion in Erbium doped Chalcogenide waveguides". Optics Express 24, nr 20 (28.09.2016): 23304. http://dx.doi.org/10.1364/oe.24.023304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Jakobs, Sebastian, Alexander Petrov i Manfred Eich. "Suppression of stimulated Brillouin scattering in integrated chalcogenide waveguides". Journal of the Optical Society of America B 31, nr 2 (3.01.2014): 178. http://dx.doi.org/10.1364/josab.31.000178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Godbout, Nicolas, Xavier Daxhelet, Suzanne Lacroix i Alain Villeneuve. "Methodology for the optimization of nonlinear properties of waveguides: application to chalcogenide channel waveguides". Journal of the Optical Society of America B 17, nr 4 (1.04.2000): 561. http://dx.doi.org/10.1364/josab.17.000561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Cao, Tun, Zhongming Wang i Libang Mao. "Reconfigurable label-free shape-sieving of submicron particles in paired chalcogenide waveguides". Nanoscale 14, nr 6 (2022): 2465–74. http://dx.doi.org/10.1039/d1nr05798g.

Pełny tekst źródła
Streszczenie:
A paired Sb2Se3 waveguides were demonstrated to sort polystyrene spherical and rod-shaped submicron particles. Reconfigurable shape-sieving of particles was achieved by reversibly transiting Sb2Se3 state.
Style APA, Harvard, Vancouver, ISO itp.
41

Кришеник, В. М. "Relaxation processes in film waveguides based on chalcogenide vitreous semiconductors". Scientific Herald of Uzhhorod University.Series Physics 9 (15.07.2001): 110–20. http://dx.doi.org/10.24144/2415-8038.2001.9.110-120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Jean, Philippe, Alexandre Douaud, Sophie LaRochelle, Younès Messaddeq i Wei Shi. "Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding". Optics Express 29, nr 13 (17.06.2021): 20851. http://dx.doi.org/10.1364/oe.430204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Herzog, Amir, Benjamin Hadad, Victor Lyubin, Matvey Klebanov, Avraham Reiner, Avishay Shamir i Amiel A. Ishaaya. "Chalcogenide waveguides on a sapphire substrate for mid-IR applications". Optics Letters 39, nr 8 (15.04.2014): 2522. http://dx.doi.org/10.1364/ol.39.002522.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ta'eed, V. G., M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Yinlan Ruan i B. Luther-Davies. "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides". IEEE Journal of Selected Topics in Quantum Electronics 12, nr 3 (maj 2006): 360–70. http://dx.doi.org/10.1109/jstqe.2006.872727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Suzuki, Keijiro, i Toshihiko Baba. "Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides". Optics Express 18, nr 25 (6.12.2010): 26675. http://dx.doi.org/10.1364/oe.18.026675.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Shokooh-Saremi, M., V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan i B. Luther-Davies. "Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides". Electronics Letters 41, nr 13 (2005): 738. http://dx.doi.org/10.1049/el:20050981.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

McMillen, Ben, Botao Zhang i Kevin Chen. "Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass". MATEC Web of Conferences 8 (2013): 06015. http://dx.doi.org/10.1051/matecconf/20130806015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Tsay, Candice, Elvis Mujagić, Christi K. Madsen, Claire F. Gmachl i Craig B. Arnold. "Mid-infrared characterization of solution-processed As_2S_3 chalcogenide glass waveguides". Optics Express 18, nr 15 (7.07.2010): 15523. http://dx.doi.org/10.1364/oe.18.015523.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Han, Ting, Steve Madden, Douglas Bulla i Barry Luther-Davies. "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography". Optics Express 18, nr 18 (26.08.2010): 19286. http://dx.doi.org/10.1364/oe.18.019286.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Caricato, A. P., M. De Sario, M. Fernández, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano i A. Jha. "Chalcogenide glass thin film waveguides deposited by excimer laser ablation". Applied Surface Science 208-209 (marzec 2003): 632–37. http://dx.doi.org/10.1016/s0169-4332(02)01409-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii