Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Chalcogenide Glass Waveguide.

Artykuły w czasopismach na temat „Chalcogenide Glass Waveguide”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chalcogenide Glass Waveguide”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Mushahid, Husain, i Raman Swati. "Chalcogenide Glass Optical Waveguides for Optical Communication". Advanced Materials Research 679 (kwiecień 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.679.41.

Pełny tekst źródła
Streszczenie:
The present research work is focused on fabricating the chalcogenide glass optical waveguides keeping in mind their application in optical communication. The propagation loss of the waveguides is also studied at three different wavelengths. The waveguides were fabricated by dry etching using ECR Plasma etching and the propagation loss is studied using Fabry-Perot technique. The waveguides having loss as low as 0.35 dB/cm at 1.3m is achieved. The technique used to fabricate waveguide is simple and cost effective.
Style APA, Harvard, Vancouver, ISO itp.
2

Luo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li i in. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics". Photonics 9, nr 2 (7.02.2022): 94. http://dx.doi.org/10.3390/photonics9020094.

Pełny tekst źródła
Streszczenie:
The interlayer coupler is one of the critical building blocks for optical interconnect based on multilayer photonic integration to realize light coupling between stacked optical waveguides. However, commonly used coupling strategies, such as evanescent field coupling, usually require a close distance, which could cause undesired interlayer crosstalk. This work presents a novel interlayer slope waveguide coupler based on a multilayer chalcogenide glass photonic platform, enabling light to be directly guided from one layer to another with a large interlayer gap (1 µm), a small footprint (6 × 1 × 0.8 µm3), low propagation loss (0.2 dB at 1520 nm), low device processing temperature, and a high bandwidth, similar to that in a straight waveguide. The proposed interlayer slope waveguide coupler could further promote the development of advanced multilayer integration in 3D optical communications systems.
Style APA, Harvard, Vancouver, ISO itp.
3

Chen Yu, 陈昱, 沈祥 Shen Xiang, 徐铁峰 Xu Tiefeng, 张巍 Zhang Wei, 陈芬 Chen Fen, 李军 Li Jun, 宋宝安 Song Bao′an, 戴世勋 Dai Shixun, 聂秋华 Nie Qiuhua i 王占山 Wang Zhanshan. "Research Progress of Chalcogenide Glass Waveguide". Laser & Optoelectronics Progress 48, nr 11 (2011): 111301. http://dx.doi.org/10.3788/lop48.111301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Balan, V., C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. I. Alonso i M. Garriga. "Chalcogenide glass-based rib ARROW waveguide". Journal of Non-Crystalline Solids 326-327 (październik 2003): 455–59. http://dx.doi.org/10.1016/s0022-3093(03)00452-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mairaj, A. K., A. Fu, H. N. Rutt i D. W. Hewak. "Optical channel waveguide in chalcogenide (Ga:La:S) glass". Electronics Letters 37, nr 19 (2001): 1160. http://dx.doi.org/10.1049/el:20010803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lin, Hongtao, Chul Soo Kim, Lan Li, Mijin Kim, William W. Bewley, Charles D. Merritt, Chadwick L. Canedy i in. "Monolithic chalcogenide glass waveguide integrated interband cascaded laser". Optical Materials Express 11, nr 9 (5.08.2021): 2869. http://dx.doi.org/10.1364/ome.435061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Cao, Lixiao, Yao Zhou, Jianxing Zhao, Hongfei Song i Jianhong Zhou. "Effect of Ag Doping on Photobleaching in Ge28Sb12Se60 Chalcogenide Films". Coatings 12, nr 11 (17.11.2022): 1760. http://dx.doi.org/10.3390/coatings12111760.

Pełny tekst źródła
Streszczenie:
Chalcogenide glass is an optical material with excellent mid-infrared and far-infrared penetration properties. The silver-doped Ge28Sb12Se60 (GSS) chalcogenide films in this paper were deposited on a glass substrate by the co-evaporation technique. A continuous laser with different power outputs was then used to scan the glass material at a constant speed, and the photobleaching (PB) effects were observed using optical microscopy. The results show that silver doping can speed up the PB of GSS film only under high-power laser irradiation. While silver doping helps to speed up the PB effect, it also increases the risk of film damage. This study is beneficial in the development of embedded optical waveguide structures.
Style APA, Harvard, Vancouver, ISO itp.
8

Deckoff-Jones, Skylar, Hongtao Lin, Derek Kita, Hanyu Zheng, Duanhui Li, Wei Zhang i Juejun Hu. "Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors". Journal of Optics 20, nr 4 (27.02.2018): 044004. http://dx.doi.org/10.1088/2040-8986/aaadc5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wang Xianwang, 王贤旺, 张巍 Zhang Wei, 章亮 Zhang Liang, 李军建 Li Junjian i 徐铁峰 Xu Tiefeng. "Research Progress of Fabrication of Chalcogenide Glass Photonic Crystal Waveguide". Laser & Optoelectronics Progress 50, nr 12 (2013): 120001. http://dx.doi.org/10.3788/lop50.120001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Han, Z., V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li i in. "On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors". Applied Physics Letters 109, nr 7 (15.08.2016): 071111. http://dx.doi.org/10.1063/1.4961532.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Han, Z., P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal i D. T. H. Tan. "On-chip mid-infrared gas detection using chalcogenide glass waveguide". Applied Physics Letters 108, nr 14 (4.04.2016): 141106. http://dx.doi.org/10.1063/1.4945667.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Psaila, Nicholas D., Robert R. Thomson, Henry T. Bookey, Shaoxiong Shen, Nicola Chiodo, Roberto Osellame, Giulio Cerullo, Animesh Jha i Ajoy K. Kar. "Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide". Optics Express 15, nr 24 (2007): 15776. http://dx.doi.org/10.1364/oe.15.015776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Cai, Dawei, Yu Xie, Xin Guo, Pan Wang i Limin Tong. "Chalcogenide Glass Microfibers for Mid-Infrared Optics". Photonics 8, nr 11 (5.11.2021): 497. http://dx.doi.org/10.3390/photonics8110497.

Pełny tekst źródła
Streszczenie:
With diameters close to the wavelength of the guided light, optical microfibers (MFs) can guide light with tight optical confinement, strong evanescent fields and manageable waveguide dispersion and have been widely investigated in the past decades for a variety of applications. Compared to silica MFs, which are ideal for working in visible and near-infrared regions, chalcogenide glass (ChG) MFs are promising for mid-infrared (mid-IR) optics, owing to their easy fabrication, broad-band transparency and high nonlinearity, and have been attracting increasing attention in applications ranging from near-field coupling and molecular sensing to nonlinear optics. Here, we review this emerging field, mainly based on its progress in the last decade. Starting from the high-temperature taper drawing technique for MF fabrication, we introduce basic mid-IR waveguiding properties of typical ChG MFs made of As2S3 and As2Se3. Then, we focus on ChG-MF-based passive optical devices, including optical couplers, resonators and gratings and active and nonlinear applications of ChG MFs for mid-IR Raman lasers, frequency combs and supercontinuum (SC) generation. MF-based spectroscopy and chemical/biological sensors are also introduced. Finally, we conclude the review with a brief summary and an outlook on future challenges and opportunities of ChG MFs.
Style APA, Harvard, Vancouver, ISO itp.
14

Zhai, Yanfen, Renduo Qi, Chenzhi Yuan, Wei Zhang i Yidong Huang. "Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide". Chinese Physics B 25, nr 11 (listopad 2016): 114211. http://dx.doi.org/10.1088/1674-1056/25/11/114211.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Yang, X. M., Yaping Zhang i Ahad Syed. "Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film". Journal of Modern Optics 62, nr 7 (23.02.2015): 548–55. http://dx.doi.org/10.1080/09500340.2014.992990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Ayiriveetil, Arunbabu, G. Sreevidya Varma, Abhishek Chaturvedi, Tamilarasan Sabapathy, Upadrasta Ramamurty i Sundarrajan Asokan. "Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide". Optical Materials 66 (kwiecień 2017): 386–91. http://dx.doi.org/10.1016/j.optmat.2017.02.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wang, Junli, Borong He, Shixun Dai, Jiangfeng Zhu i Zhiyi Wei. "Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing". IEEE Photonics Technology Letters 27, nr 3 (1.02.2015): 237–40. http://dx.doi.org/10.1109/lpt.2014.2365619.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zhai, Yanfen, Chenzhi Yuan, Renduo Qi, Wei Zhang i Yidong Huang. "Reverse Ridge/Slot Chalcogenide Glass Waveguide With Ultrabroadband Flat and Low Dispersion". IEEE Photonics Journal 7, nr 5 (październik 2015): 1–9. http://dx.doi.org/10.1109/jphot.2015.2456062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Alizadeh, Mohammad Reza, i Mahmood Seifouri. "Design and Analysis of a Dispersion-engineered and Highly Nonlinear Rib Waveguide for Generation of Broadband Supercontinuum Spectra". Frequenz 74, nr 3-4 (26.03.2020): 153–61. http://dx.doi.org/10.1515/freq-2019-0098.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper, a waveguide consisting of a core of As2Se3 chalcogenide glass and the upper and lower claddings of MgF2 with two zero-dispersion wavelengths (ZDW) has been proposed. By optimization of the dimensions of the core and the claddings, their effects on the dispersion curve have been investigated and a suitable structure with a flat dispersion curve, an effective mode area of ​​1.6 μm2 in a pump wavelength of 2.8 μm, and hence, a nonlinear coefficient greater than 34 w−1 m−1 has been obtained. A broadband supercontinuum in a wavelength range of 1.5 μm to 15 μm has been generated by applying an input pulse with duration of 100 fs and a maximum power of 2 kw to this waveguide. Due to the large width of the supercontinuum generated (SCG), the short length of the waveguide (maximum 5 mm), and a low input power, this structure is suitable for use in optical integrated circuits and its various applications.
Style APA, Harvard, Vancouver, ISO itp.
20

Sabapathy, Tamilarasan, Arunbabu Ayiriveetil, Ajoy K. Kar, Sundarrajan Asokan i Stephen J. Beecher. "Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass". Optical Materials Express 2, nr 11 (5.10.2012): 1556. http://dx.doi.org/10.1364/ome.2.001556.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Qiu, Feng, i Tadashi Narusawa. "Ion-implanted Ti-doped chalcogenide glass waveguide as a candidate for tunable lasers". Journal of the Optical Society of America B 28, nr 6 (19.05.2011): 1490. http://dx.doi.org/10.1364/josab.28.001490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Yu, Yi, Xin Gai, Pan Ma, Duk-Yong Choi, Zhiyong Yang, Rongping Wang, Sukanta Debbarma, Stephen J. Madden i Barry Luther-Davies. "A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide". Laser & Photonics Reviews 8, nr 5 (19.05.2014): 792–98. http://dx.doi.org/10.1002/lpor.201400034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Zhai, Yanfen, Renduo Qi, Chenzhi Yuan, Wei Zhang i Yidong Huang. "High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling". Applied Physics Express 9, nr 5 (31.03.2016): 052201. http://dx.doi.org/10.7567/apex.9.052201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Hu, Juejun, Nathan Carlie, Ning-Ning Feng, Laeticia Petit, Anu Agarwal, Kathleen Richardson i Lionel Kimerling. "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing". Optics Letters 33, nr 21 (24.10.2008): 2500. http://dx.doi.org/10.1364/ol.33.002500.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Shi, Yuxiu, Peipeng Xu, Zenghui Yu, Xiang Shen i Qiuhua Nie. "Rib chalcogenide glass waveguide with simultaneous dispersion flatting for both transverse electric and magnetic modes". Optik 138 (czerwiec 2017): 433–39. http://dx.doi.org/10.1016/j.ijleo.2017.03.101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Mairaj, Arshad K., Christos Riziotis, Alain M. Chardon, Peter G. R. Smith, David P. Shepherd i Daniel W. Hewak. "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification". Applied Physics Letters 81, nr 20 (11.11.2002): 3708–10. http://dx.doi.org/10.1063/1.1520698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

QI Renduo, 齐人铎, 翟彦芬 ZHAI Yanfen, 张巍 ZHANG Wei i 黄翊东 HUANG Yidong. "热熔融自回流方法制备硫化物玻璃非线性集成光学波导(特邀)". ACTA PHOTONICA SINICA 51, nr 5 (2022): 0551303. http://dx.doi.org/10.3788/gzxb20225105.0551303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Du, Qingyang, Zhengqian Luo, Huikai Zhong, Yifei Zhang, Yizhong Huang, Tuanjie Du, Wei Zhang, Tian Gu i Juejun Hu. "Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide". Photonics Research 6, nr 6 (26.04.2018): 506. http://dx.doi.org/10.1364/prj.6.000506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lamont, M. R. E., V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden i B. Luther-Davies. "Error-free wavelength conversion via cross-phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide". Electronics Letters 43, nr 17 (2007): 945. http://dx.doi.org/10.1049/el:20071470.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Wang, Yuefeng, Weiwei Chen, Pengjun Wang, Shixun Dai, Jun Li, Yan Li, Qiang Fu, Tingge Dai, Hui Yu i Jianyi Yang. "Ultra-high-power-confinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide". Sensors and Actuators B: Chemical 347 (listopad 2021): 130466. http://dx.doi.org/10.1016/j.snb.2021.130466.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Saini, Than Singh, Umesh Kumar Tiwari i Ravindra Kumar Sinha. "Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis". Journal of Applied Physics 122, nr 5 (7.08.2017): 053104. http://dx.doi.org/10.1063/1.4997541.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Chen, Zhi, Guande Wang, Xiong Wang i Quanzhong Zhao. "Moving toward optoelectronic logic circuits for visible light: a chalcogenide glass single-mode single-polarization optical waveguide switch". Applied Optics 56, nr 5 (7.02.2017): 1405. http://dx.doi.org/10.1364/ao.56.001405.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Gonzalez, Guillermo Fernando Camacho, Marcin Malinowski, Amirmahdi Honardoost i Sasan Fathpour. "Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third- and second-order optical nonlinearities". Applied Optics 58, nr 13 (15.02.2019): D1. http://dx.doi.org/10.1364/ao.58.0000d1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zou, L. E., P. P. He, B. X. Chen i M. Iso. "Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation". AIP Advances 7, nr 2 (luty 2017): 025003. http://dx.doi.org/10.1063/1.4976107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Shiryaev, Vladimir S., Alexander P. Velmuzhov, Tatiana V. Kotereva, Elizaveta A. Tyurina, Maksim V. Sukhanov i Ella V. Karaksina. "Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing". Fibers 11, nr 6 (16.06.2023): 54. http://dx.doi.org/10.3390/fib11060054.

Pełny tekst źródła
Streszczenie:
Recent results of research of passive and active optical waveguides made of high-purity chalcogenide glasses for middle infrared fiberoptic evanescent wave spectroscopy of liquid and gaseous substances are presented. On the basis of selenide and telluride glass fibers, novel types of highly sensitive fiber probes are developed. On the basis of Pr(3+)- and Tb(3+)-doped Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, the 4.2–6 μm wavelength radiation sources are created for all-fiber sensor systems. Successful testing of chalcogenide glass fiber sensors for the analysis of some liquid and gaseous mixtures was carried out.
Style APA, Harvard, Vancouver, ISO itp.
36

Anne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite i in. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing". Sensors 9, nr 9 (15.09.2009): 7398–411. http://dx.doi.org/10.3390/s90907398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Curry, R. J., A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak i J. V. Badding. "Chalcogenide Glass Thin Films and Planar Waveguides". Journal of the American Ceramic Society 88, nr 9 (wrzesień 2005): 2451–55. http://dx.doi.org/10.1111/j.1551-2916.2005.00349.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Spälter, S., H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong i R. E. Slusher. "Strong self-phase modulation in planar chalcogenide glass waveguides". Optics Letters 27, nr 5 (1.03.2002): 363. http://dx.doi.org/10.1364/ol.27.000363.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

McMillen, Ben, Mingshan Li, Sheng Huang, Botao Zhang i Kevin P. Chen. "Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass". Optics Letters 39, nr 12 (10.06.2014): 3579. http://dx.doi.org/10.1364/ol.39.003579.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

DeCorby, R. G., N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin i S. O. Kasap. "High index contrast waveguides in chalcogenide glass and polymer". IEEE Journal of Selected Topics in Quantum Electronics 11, nr 2 (marzec 2005): 539–46. http://dx.doi.org/10.1109/jstqe.2005.845610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Suzuki, Keijiro, Yohei Hamachi i Toshihiko Baba. "Fabrication and characterization of chalcogenide glass photonic crystal waveguides". Optics Express 17, nr 25 (23.11.2009): 22393. http://dx.doi.org/10.1364/oe.17.022393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ganjoo, A., H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding i C. G. Pantano. "Planar chalcogenide glass waveguides for IR evanescent wave sensors". Journal of Non-Crystalline Solids 352, nr 6-7 (maj 2006): 584–88. http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Jean, Philippe, Alexandre Douaud, Sophie LaRochelle, Younès Messaddeq i Wei Shi. "Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding". Optics Express 29, nr 13 (17.06.2021): 20851. http://dx.doi.org/10.1364/oe.430204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

McMillen, Ben, Botao Zhang i Kevin Chen. "Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass". MATEC Web of Conferences 8 (2013): 06015. http://dx.doi.org/10.1051/matecconf/20130806015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Tsay, Candice, Elvis Mujagić, Christi K. Madsen, Claire F. Gmachl i Craig B. Arnold. "Mid-infrared characterization of solution-processed As_2S_3 chalcogenide glass waveguides". Optics Express 18, nr 15 (7.07.2010): 15523. http://dx.doi.org/10.1364/oe.18.015523.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Han, Ting, Steve Madden, Douglas Bulla i Barry Luther-Davies. "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography". Optics Express 18, nr 18 (26.08.2010): 19286. http://dx.doi.org/10.1364/oe.18.019286.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Caricato, A. P., M. De Sario, M. Fernández, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano i A. Jha. "Chalcogenide glass thin film waveguides deposited by excimer laser ablation". Applied Surface Science 208-209 (marzec 2003): 632–37. http://dx.doi.org/10.1016/s0169-4332(02)01409-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Almeida, J. M. P., E. C. Barbano, C. B. Arnold, L. Misoguti i C. R. Mendonça. "Nonlinear optical waveguides in As_2S_3-Ag_2S chalcogenide glass thin films". Optical Materials Express 7, nr 1 (6.12.2016): 93. http://dx.doi.org/10.1364/ome.7.000093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hughes, Mark A., Weijia Yang i Daniel W. Hewak. "Spectral broadening in femtosecond laser written waveguides in chalcogenide glass". Journal of the Optical Society of America B 26, nr 7 (15.06.2009): 1370. http://dx.doi.org/10.1364/josab.26.001370.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Tsay, Candice, Yunlai Zha i Craig B. Arnold. "Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides". Optics Express 18, nr 25 (6.12.2010): 26744. http://dx.doi.org/10.1364/oe.18.026744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii