Gotowa bibliografia na temat „Ceramic”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ceramic”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ceramic"
Scolaro, Juliano Milczewsky, Jefferson Ricardo Pereira, Accácio Lins do Valle, Gerson Bonfante i Luiz Fernando Pegoraro. "Comparative study of ceramic-to-metal bonding". Brazilian Dental Journal 18, nr 3 (2007): 240–43. http://dx.doi.org/10.1590/s0103-64402007000300012.
Pełny tekst źródłaColomban, Ph. "Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites". Ceramics International 15, nr 1 (styczeń 1989): 23–50. http://dx.doi.org/10.1016/0272-8842(89)90005-9.
Pełny tekst źródłaLv, Xiang, Xinyu Liu i Jiagang Wu. "Decoding the correlation between initial polarity and strain property of BNT-based ceramics". Journal of Applied Physics 132, nr 16 (28.10.2022): 164101. http://dx.doi.org/10.1063/5.0121941.
Pełny tekst źródłaCheng, Zhao Gang, Xin Hua Ni i Xie Quan Liu. "The Mechanical-Stress-Field of Matrix in Eutectic Ceramic Composite". Applied Mechanics and Materials 121-126 (październik 2011): 3607–11. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.3607.
Pełny tekst źródłaAronov, V., i T. Mesyef. "Wear in Ceramic/Ceramic and Ceramic/Metal Reciprocating Sliding Contact. Part 1". Journal of Tribology 108, nr 1 (1.01.1986): 16–21. http://dx.doi.org/10.1115/1.3261136.
Pełny tekst źródłaJiang, Hong. "Research on Applied-Information Technology in Online Compact System Based on Serial Communication". Advanced Materials Research 1046 (październik 2014): 431–35. http://dx.doi.org/10.4028/www.scientific.net/amr.1046.431.
Pełny tekst źródłaShi, Hao Yu, Runxuan Pang, Jing Yang, Di Fan, HongXin Cai, Heng Bo Jiang, Jianmin Han, Eui-Seok Lee i Yunhan Sun. "Overview of Several Typical Ceramic Materials for Restorative Dentistry". BioMed Research International 2022 (18.07.2022): 1–18. http://dx.doi.org/10.1155/2022/8451445.
Pełny tekst źródłaYan, Yan Yan, Bo Zhao i Jun Li Liu. "Research on the Fracture Phenomenon of Zirconia-Toughened Alumina Ceramics under Ultrasonic Vibration". Key Engineering Materials 455 (grudzień 2010): 156–60. http://dx.doi.org/10.4028/www.scientific.net/kem.455.156.
Pełny tekst źródłaDing, Liang. "Analysis of Creative Teaching of Ceramics and Student Creativity in Colleges and Universities in China". Scientific and analytical journal Burganov House. The space of culture 18, nr 2 (10.05.2022): 80–86. http://dx.doi.org/10.36340/2071-6818-2022-18-2-80-86.
Pełny tekst źródłaDenny Sukma Eka Atmaja i Muhammad Kusumawan Herliansyah. "Optimasi Parameter Pengukuran Dimensi dan Defect Ubin Keramik dengan Metode Taguchi". Jurnal Sistem Cerdas 4, nr 3 (28.12.2021): 171–79. http://dx.doi.org/10.37396/jsc.v4i3.182.
Pełny tekst źródłaRozprawy doktorskie na temat "Ceramic"
Dobedoe, Richard Simon. "Glass-ceramics for ceramic/ceramic and ceramic/metal joining applications". Thesis, University of Warwick, 1997. http://wrap.warwick.ac.uk/4217/.
Pełny tekst źródłaWade, James. "Contact damage of ceramics and ceramic nanocomposites". Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/24932.
Pełny tekst źródłaVENTRELLA, ANDREA. "JOINING OF CERAMIC COMPOSITES AND ADVANCED CERAMICS". Doctoral thesis, Politecnico di Torino, 2012. http://hdl.handle.net/11583/2502686.
Pełny tekst źródłaMussi, Toschi Vitoria. "Lead-free ferroelectric ceramics for multilayer ceramic capacitors". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC089.
Pełny tekst źródłaMLCC consumption is today increasing due to their high efficiency, reliability and frequency characteristics. MLCCs that can work from 300 to 350°C are required both for miniaturization, resulting in greater volume heat dissipation and for new applications. Moreover, environmental requirements are also increasing, the REACH and RoHS regulations prohibiting the use of lead in Europe. It is imperative to create new lead-free materials that are able to meet those requirements.However, the compatibility with the production methods, price, and market are important industrial limitations that need to be considered.Three families of lead-free materials were examined: BaTiO3-based, K0.5Na0.5NbO3-based and Na0.5Bi0.5TiO3-based materials. NBT-BT at the morphotropic phase boundary (6% BT) was chosen as the base dielectric material.Several synthesis methods and parameters were studied to determine the best synthesis conditions. Solid-state synthesis and traditional sintering were chosen for the bulk samples and tape casting was chosen for the layer samples preparation. Sintering was done under ZrO2 powder to prevent the evaporation of volatile species.All samples had secondary Ba-containing phases (Ba2TiO4 and Ba2Ti9O20) formed because of the evaporation of Na during sintering. A skin-effect was observed due to a phase coexistence (tetragonal, rhombohedral, and cubic) due to the local concentration of Ba in the NBT lattice.The effects of the synthesis parameters and the stoichiometry of the reactants on dielectric properties, insulation resistance, and phase separation were analysed.The Na0.44Bi0.48Ba0.06TiO3 nominal stoichiometry was the most suitable for the MLCCs due to its high insulation resistance, low dielectric losses, and stability of permittivity in temperature.The phase separation was initially beneficial, due to the resulting elimination of oxygen vacancies. Above a critical volume fraction (2.5 to 3.0%) and a critical mean surface area (0.9 to 3.0 m2), the trend was reversed due to the conductive nature of the secondary phases.To achieve the critical volume fraction and surface area of the secondary phases, a dispersing agent was used during ball-milling in YSZ jar, with MEK and ethanol as solvents, and without drying the reactants prior to weighing. Finally, a strain relaxation was done at 400°C for 3 hours.Three models explained the frequency dispersion of the dielectric properties: the Maxwell-Wagner model, the Nyquist plot and the modified Curie-Weiss law.Incompatibilities between the dielectric properties of NBT-BT reported in the literature were then analysed, showing the importance of maintaining strict synthesis and measurement methods. The three main factors affected the dielectric properties, creating these incompatibilities in the bulk samples. There were the stoichiometry, the metallization method, and the fixing of the electrical leads using silver paste.An increase of the high-temperature dielectric losses after each thermal cycle reaching more than 300°C was observed, indicating a thermal degradation of the material.Finally, the sintered ceramic monolayers showed a low density (62%), limiting the temperature range corresponding to Exxelia’s specifications. However, after pressing the layers together before sintering, the sintered multilayer sample showed a high density (89%). Dielectric property measurement should be carried out for these synthesized multilayers
Minatti, José Luiz [UNESP]. "Desenvolvimento de cerâmicas de mulita a partir de alumina, ácido silícico e aerosil". Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/103747.
Pełny tekst źródłaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho, apresenta-se uma rota alternativa para produção de cerâmicas de mulita (3Al2O3.2SiO2), a partir da mistura de pós de alumina (Al2O3) e sílica (SiO2), para uma possível aplicação em um dispositivo de perfuração de rochas por jato supersônico quente (thermal spallation). Os pós precursores foram utilizados de dois modos diferentes: no primeiro com tamanho micrométrico, tal como fornecido pelos fabricantes; no segundo, a alumina foi moída e misturada separadamente com ácido silícico e aerosil nanométricos, ambos usados como fontes de sílica. O processo consistiu basicamente na mistura a úmido dos pós, secagem, prensagem e sinterização. Além do tamanho das partículas dos pós, foi avaliada a influência da pressão de prensagem (40 a 300 MPa), dos aditivos de sinterização (MgO, CaO e Y2O3), do meio de dispersão (água e álcool), da calcinação dos pós, da temperatura (1600 e 1650 ºC) e do tempo (1 e 3h) de sinterização. As cerâmicas obtidas foram caracterizadas de acordo com a contração, perda de massa, porosidade e densidade aparente e resistência à flexão. A microestrutura foi caracterizada por meio da microscopia óptica e microscopia eletrônica de varredura (MEV), e complementada com difração de raios X. Os resultados obtidos mostram que cerâmicas de mulita para aplicações comerciais, que requerem resistência mecânica até aproximadamente 207 MPa, podem ser obtidas utilizando pós de alumina moída e aerosil 380, com 1 % de CaO, homogeneizadas com álcool, calcinadas a 600 ºC, prensadas com 160 MPa (ou mais), pré-sinterizadas a 1000 ºC por 1h e sinterizadas a 1650 ºC por 1h. Estas cerâmicas demonstram também, grande potencial para uso em queimadores para fornos e tubeiras para thermal spallation.
The present study was made in order to obtain an alternative process to produce mullite ceramic (3Al2O3.2SiO2), from powder mixture of alumina (Al2O3) and silica (SiO2), for a possible use in a device for rock drilling hot supersonic jet (thermal spallation). The precursors powders were employed in two different ways: the first powder, in micrometric size, was used as supplied by the manufacturer; the second, milled alumina was alternated with silicic acid and nanometric aerosil®, both used as silica sources. The ceramic processing consisted basically of four steps: mixture of humid powders, drying, pressing and sintering. Besides the powder particle size, it was also evaluated the influence of the pressing (40 to 300 MPa), the sintering additives (MgO, CaO and Y2O3), the middle of dispersion (water and alcohol), the powder calcination and the time (1 and 3h) and sintering temperature (1600 and 1650 ºC). The obtained ceramics were characterized according to the contraction, mass loss, porosity, densification and resistance to flexing. The microstructure was analyzed by light microscopy, scanning electron microscopy (SEM) besides X-ray diffraction. The obtained results show that mullite ceramic for commercial applications requiring mechanical resistance up to about approximately 207 MPa, it can be obtained using milled alumina powder and aerosil 380® with 1 % CaO, homogenized with alcohol, calcined in 600 ºC, pressed with 160 MPa (or more), pre-sintered to 1000 ºC for 1h and sintered to 1650 ºC for 1h. These ceramic also show, great potential to be used in burners for ovens and nozzles for thermal spallation.
Sütçü, Mücahit Akkurt Sedat. "Development of Dense Ceramic Tiles From Mixtures of Alumina Powders With Different Psd/". [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/malzemebilimivemuh/T000462.pdf.
Pełny tekst źródłaHill, Arnold Hill. "PRODUCTION OF BULK CERAMIC SHAPES FROM POLYMER DERIVED CERAMICS". Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4248.
Pełny tekst źródłaM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
Feilden, Ezra. "Additive manufacturing of ceramics and ceramic composites via robocasting". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55940.
Pełny tekst źródłaBoismenu, Nicholas. "Indirect Measure". Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3351.
Pełny tekst źródłaAdicks, Michael Kent. "Strength characterization of thin-wall hollow ceramic spheres from slurries". Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/9318.
Pełny tekst źródłaKsiążki na temat "Ceramic"
R, Levine Stanley, red. Ceramics and ceramic-matrix composites. New York, N.Y: American Society of Mechanical Engineers, 1992.
Znajdź pełny tekst źródłaDesign, innovazione e cultura del territorio: Ceramica Fioranese fra prodotto e processo. Bologna]: Logo Fausto Lupetti editore, 2020.
Znajdź pełny tekst źródłaSociety, American Ceramic. Ceramic source. [Columbus, Ohio]: The Society, 1986.
Znajdź pełny tekst źródła(Firm), Knovel, red. Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005.
Znajdź pełny tekst źródłaVary, Alex. NDE of ceramis and ceramic composites. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Znajdź pełny tekst źródłaShi, Feng. Ceramic materials: Progress in modern ceramics. Rijeka, Croatia: InTech, 2012.
Znajdź pełny tekst źródłaOntario, Ministry of Industry Trade and Technology. The Impact of advanced ceramics on Ontario industry: An overview = L'effet des céramiques de pointe sur l'industrie en Ontario : aperçu. [Toronto]: Technology Policy Branch, Ontario Ministry of Industry, Trade and Technology, 1988.
Znajdź pełny tekst źródłaPampuch, Roman. ABC of contemporary ceramic materials. Faenza, Italy: Techna Group, 2008.
Znajdź pełny tekst źródłaCeramic hardness. New York: Plenum Press, 1990.
Znajdź pełny tekst źródłaD, Peteves S., Commission of the European Communities. i European Colloquium on "Designing Interfaces for Technological Applications: Ceramic-Ceramic, Ceramic-Metal Joining (1988 : Petten, Netherlands), red. Designing interfaces for technological applications: Ceramic-ceramic ceramic-metal joining. London: Elsevier Applied Science, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Ceramic"
Kenanidis, Eustathios, Panagiotis Kakoulidis i Eleftherios Tsiridis. "Ceramic on Ceramic". W The Adult Hip - Master Case Series and Techniques, 379–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64177-5_16.
Pełny tekst źródłaBuchanan, James M., i Sally Goodfellow. "Hydroxyapatite Ceramic Hip Survey: Ceramic/Ceramic Bearings". W Bioceramics 20, 1283–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.1283.
Pełny tekst źródłaGooch, Jan W. "Ceramic". W Encyclopedic Dictionary of Polymers, 131. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2159.
Pełny tekst źródłaNiwa, Koichi, Koji Omote, Yasushi Goto i Nobuo Kamehara. "Ceramic-Metal Interfaces in Electronic Ceramics —Interface Between Ain Ceramics and Conductors". W Ceramic Microstructures, 391–97. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5393-9_37.
Pełny tekst źródłaSchmidt, Helmut, Frank Tabellion, Karl-Peter Schmitt i Peter-William Oliveira. "Ceramic Nanoparticle Technologies for Ceramics and Composites". W Ceramic Transactions Series, 171–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118406083.ch18.
Pełny tekst źródłaLi, Mao Qiang. "Making Fluorophlogopite Ceramics through Ceramic Processing". W Key Engineering Materials, 1833–35. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1833.
Pełny tekst źródłaShanaghi, Ali, Paul K. Chu, Ali Reza Souri i Babak Mehrjou. "Advanced Ceramics (Self-healing Ceramic Coatings)". W Advanced Ceramics, 137–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43918-6_4.
Pełny tekst źródłaWitvoet, J., R. Nizard i L. Sedel. "Ceramic on Ceramic Bearing Surfaces". W Interfaces in Total Hip Arthroplasty, 143–50. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0477-3_13.
Pełny tekst źródłaMoreno, Rodrigo. "Colloidal Processing of Ceramic-Ceramic and Ceramic-Metal Composites". W Ceramic Transactions Series, 145–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144442.ch13.
Pełny tekst źródłaNicholas, M. G. "Material Aspects of Ceramic-Ceramic and Ceramic-Metal Bonding". W Advanced Joining Technologies, 160–71. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0433-0_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Ceramic"
Easley, M. L., i J. R. Smyth. "Ceramic Gas Turbine Technology Development". W ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-367.
Pełny tekst źródłaRettler, M. W., M. L. Easley i J. R. Smyth. "Ceramic Gas Turbine Technology Development". W ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-207.
Pełny tekst źródłaSova, A., V. Kosarev, A. Papyrin i I. Smurov. "Effect of The Ceramic Component on Cold Sprayed Metal Ceramic Coatings". W ITSC2010, redaktorzy B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima i G. Montavon. DVS Media GmbH, 2010. http://dx.doi.org/10.31399/asm.cp.itsc2010p0548.
Pełny tekst źródłaKinney, Troy W., i Michael L. Easley. "Ceramic Gas Turbine Technology Development". W ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-465.
Pełny tekst źródłaEasley, Michael L., Bjoern Schenk i Hongda Cai. "Ceramic Gas Turbine Technology Development". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-553.
Pełny tekst źródłaEasley, Michael L., Bjoern Schenk i Hongda Cai. "Ceramic Gas Turbine Technology Development". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-554.
Pełny tekst źródłaSmyth, J. R., R. E. Morey i R. W. Schultze. "Ceramic Gas Turbine Technology Development and Applications". W ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-361.
Pełny tekst źródłaSchenk, Bjoern. "Ceramic Gas Turbine Technology Development". W ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-315.
Pełny tekst źródłaBornemisza, Tibor. "Ceramic Small Gas Turbine Technology Demonstrator". W ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-306.
Pełny tekst źródłaJimenez, Oscar, John McClain, Bryan Edwards, Vijay Parthasarathy, Hamid Bagheri i Gary Bolander. "Ceramic Stationary Gas Turbine Development Program — Design and Test of a Ceramic Turbine Blade". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-529.
Pełny tekst źródłaRaporty organizacyjne na temat "Ceramic"
Pilania, Ghanshyam. Misfit dislocations at metal-ceramic and ceramic-ceramic interfaces. Office of Scientific and Technical Information (OSTI), czerwiec 2015. http://dx.doi.org/10.2172/1184608.
Pełny tekst źródłaClarke, D. R., i D. Wolf. Grain boundaries in ceramics and ceramic-metal interfaces. Office of Scientific and Technical Information (OSTI), styczeń 1986. http://dx.doi.org/10.2172/6923214.
Pełny tekst źródłaVedula, Krishna M. Ultra High Temperature Ceramic-Ceramic Composites. Fort Belvoir, VA: Defense Technical Information Center, październik 1989. http://dx.doi.org/10.21236/ada230593.
Pełny tekst źródłaTortorelli, P. F. High-temperature corrosion resistance of ceramics and ceramic coatings. Office of Scientific and Technical Information (OSTI), czerwiec 1996. http://dx.doi.org/10.2172/450771.
Pełny tekst źródłaAlivisatos, A. P. Ceramic Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, luty 2002. http://dx.doi.org/10.21236/ada400094.
Pełny tekst źródłaHolmes, B. L., i M. A. Janney. Ceramic filters. Office of Scientific and Technical Information (OSTI), grudzień 1995. http://dx.doi.org/10.2172/220576.
Pełny tekst źródłaYet-Ming Chiang. Ceramic Interfaces. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/839143.
Pełny tekst źródłaGates, Richard Stephen, Richard Stephen Gates, Stephen M. Hsu i E. Erwin Klaus. Ceramic tribology. Gaithersburg, MD: National Institute of Standards and Technology, 1988. http://dx.doi.org/10.6028/nist.sp.758.
Pełny tekst źródłaSmartt, Heidi A., Juan A. Romero, Joyce Olsen Custer, Ross W. Hymel, Dan Krementz, Derek Gobin, Larry Harpring i in. Ceramic Seal. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1333272.
Pełny tekst źródłaJahanmir, Said, Said Jahanmir, LK Ives, Arthur W. Ruff i M. B. Peterson. Ceramic machining. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.sp.834.
Pełny tekst źródła