Gotowa bibliografia na temat „Central nervous system”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Central nervous system”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Central nervous system"

1

Adamson, D. Cory, B. Ahmed K. Rasheed, Roger E. McLendon i Darell D. Bigner. "Central nervous system". Cancer Biomarkers 9, nr 1-6 (26.10.2011): 193–210. http://dx.doi.org/10.3233/cbm-2011-0177.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Desole, M. S., P. Enrico, M. Miele, L. Fresu, G. Esposito, G. De Natale i E. Miele. "Central nervous system". Pharmacological Research 25 (maj 1992): 19–20. http://dx.doi.org/10.1016/1043-6618(92)90265-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Goldberg, Herbert I., i Robert A. Zimmerman. "Central nervous system". Seminars in Roentgenology 22, nr 3 (lipiec 1987): 205–12. http://dx.doi.org/10.1016/0037-198x(87)90034-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vimal, Shruti. "Histopathological Spectrum of Central Nervous System Tumours in a Tertiary Care Centre". Indian Journal of Pathology: Research and Practice 9, nr 2 (Part- I) (1.05.2020): 103–10. http://dx.doi.org/10.21088/ijprp.2278.148x.9220.18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Colman Ozuna, Víctor Manuel, Natalia María Antonella Rojas Almirón, Edgar Eugenio Ortega Portillo, Sandra María Soto Valiente, Vivian María Liz Pérez i Graciela Medina Insfran. "Vasculitis del sistema nervioso central". Revista del Instituto de Medicina Tropical 18, nr 1 (9.08.2023): 90–93. http://dx.doi.org/10.18004/imt/2023.18.1.12.

Pełny tekst źródła
Streszczenie:
La vasculitis primaria del Sistema Nervioso Central (VPSNC) se refiere a un grupo de enfermedades que resultan de la inflamación y destrucción de los vasos sanguíneos de la médula espinal, encéfalo y meninges, tanto en el sector venoso como arterial, esto puede conducir a la oclusión o formación de aneurismas, con las consiguientes alteraciones isquémico-hemorrágicas.1 La presentación es heterogénea y poco sistematizable. El diagnóstico se establece con un cuadro clínico compatible, una angiografía o biopsia del parénquima encefálico y/o meninges que evidencien vasculitis. Presentamos el caso de un paciente portador de retrovirus con probable VPSNC con clínica compatible, hallazgos imagenológicos sugestivos, con escasa alteración de LCR y EEG.2
Style APA, Harvard, Vancouver, ISO itp.
6

Canillas, M., B. Moreno-Burriel i E. Chinarro. "Materials directed to implants for repairing Central Nervous System". Boletín de la Sociedad Española de Cerámica y Vidrio 53, nr 6 (30.12.2014): 249–59. http://dx.doi.org/10.3989/cyv.302014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

K, Sailaja. "A STUDY ON CONGENITAL ANOMALIES OF CENTRAL NERVOUS SYSTEM". International Journal of Anatomy and Research 5, nr 2.2 (31.05.2017): 3819–23. http://dx.doi.org/10.16965/ijar.2017.189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lipton, Jordan D., i Robert W. Schafermeyer. "Central Nervous System Infections". Emergency Medicine Clinics of North America 13, nr 2 (maj 1995): 417–43. http://dx.doi.org/10.1016/s0733-8627(20)30358-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Frost, Elizabeth A. M. "Central Nervous System Trauma". Anesthesiology Clinics of North America 5, nr 3 (wrzesień 1987): 565–85. http://dx.doi.org/10.1016/s0889-8537(21)00334-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Brem, Steven S., Philip J. Bierman, Henry Brem, Nicholas Butowski, Marc C. Chamberlain, Ennio A. Chiocca, Lisa M. DeAngelis i in. "Central Nervous System Cancers". Journal of the National Comprehensive Cancer Network 9, nr 4 (kwiecień 2011): 352–400. http://dx.doi.org/10.6004/jnccn.2011.0036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Central nervous system"

1

Solomon, Thomas. "Central nervous system infections in Vietnam". Thesis, Open University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340736.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Hui. "Remyelination in the central nervous system". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8095.

Pełny tekst źródła
Streszczenie:
Multiple Sclerosis (MS) is an inflammatory disease which causes areas of demyelination in the Central Nervous System (CNS) and affects only humans. Current therapies for MS are focused on anti-inflammatory treatment, which reduce the occurrence and clinical relapses of the disease. However, progressive disability of the disease is related to axonal degeneration. After demyelination, remyelination occurs, which helps repair the demyelinated lesions and protects axons from degeneration. However, this endogenous remyelination is inefficient, and currently there are no therapies available to enhance remyelination. The aim of this thesis was to first characterize a fast and reliable model to study CNS remyelination in vitro, and second to investigate the role of semaphorin 3a (Sema3A) and semaphorin 3f (Sema3F) signaling in CNS remyelination. Various in vivo models have been developed to investigate the pathology of multiple sclerosis, and can be used to test remyelination therapies. However, in vivo models are expensive, animal- and time- consuming. Until now, there has been no well-characterized and robust in vitro model for remyelination study. In this thesis, an ex vivo slice culture system with mouse brain and spinal cord was developed, and characterized by immunofluorescent microscopy and transmission electron microscopy, for CNS remyelination study. Automated (re)myelinating quantification by image pro plus software was developed and validated to provide a fast and reliable way for testing factors that change remyelination efficiency. Two such factors are Sema3A and 3F, which were initially identified as axon guidance cues during development. Sema3A (repulsive) and 3F (attractive) were proved to play a role in oligodendrocyte precursor cell (OPC) migration during development, and hypothesized to be important in remyelination. In this thesis, I investigated the effects and mechanisms for this by adding recombinant SEMA3A or SEMA3F or by knockdown their obligatory receptors Neuropilin (Nrp) 1 and 2, using lentivirus induced miRNAi. Slice culture and primary OPC culture were used to determine the effect on OPC survival, migration, proliferation, differentiation and myelination.
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Xiaochun. "Involvement of neuroinflammation in models of neurodegeneration". Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1663059561&sid=3&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Poland, Stephen D. "Central nervous system infection with human cytomegalovirus". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21311.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bernick, Kristin Briana. "Cell biomechanics of the central nervous system". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67202.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 133-153).
Traumatic brain injury (TBI) is a significant cause of death and morbidity in both the civilian and military populations. The major causes of TBI, such as motor vehicle accidents, falls, sports concussions, and ballistic and explosive blast threats for military personnel, are well established and extensively characterized; however, there remains much to be learned about the specific mechanisms of damage leading to brain injury, especially at the cellular level. In order to understand how cells of the central nervous system (CNS) respond to mechanical insults and stimuli, a combined modeling/experimental approach was adopted. A computational framework was developed to accurately model how cells deform under various macroscopically imposed loading conditions. In addition, in vitro (cell culture) models were established to investigate damage responses to biologically relevant mechanical insults. In order to develop computational models of cell response to mechanical loading, it is essential to have accurate material properties for all cells of interest. In this work, the mechanical responses of neurons and astrocytes were quantified using atomic force microscopy (AFM) at three different loading rates and under relaxation to enable characterization of both the elastic and viscous components of the cell response. AFM data were used to calibrate an eight-parameter rheological model implemented in the framework of a commercial finite element package (Abaqus). Model parameters fit to the measured responses of neurons and astrocytes provide a quantitative measure of homogenized nonlinear viscoelastic properties for each cell type. In order to ensure that the measured responses could be considered representative of cell populations in their physiological environment, cells were also grown and tested on substrates of various stiffness, with the softest substrate mimicking the stiffness of brain tissue. Results of this study showed both the morphology and measured force response of astrocytes to be significantly affected by the stiffness of their substrate, with cells becoming increasingly rounded on soft substrates. Results of simulations suggested that changes in cell morphology were able to account for the observed changes in AFM force response, without significant changes to the cell material properties. In contrast, no significant changes in cell morphology were observed for neurons. These results highlight the importance of growing cells in a biologically relevant environment when studying mechanically mediated responses, such as TBI. To address this requirement, we developed two model systems with CNS cells grown in soft, 3D gels to investigate damage arising from dynamic compressive loading and from a shock pressure wave. These damage protocols, coupled with the single cell computational models, provide a new tool set for characterizing damage mechanisms in CNS cells and for studying TBI in highly controllable in vitro conditions.
by Kristin Briana Bernick.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
6

Coutinho, Maria Ester Freitas Barbosa Pereira. "Central nervous system autoimmunity in neuropsychiatric disorders". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:389fb830-4b4e-4201-9965-19acb2c63ff3.

Pełny tekst źródła
Streszczenie:
The recent history of autoimmune neurology is marked by the discovery of many central nervous system (CNS) antibody-mediated diseases. These disorders are caused by antibodies that target important proteins expressed in the neuronal surface, which are believed to be directly pathogenic. These antibodies are immunoglobulin G (IgG) isotype and, as such, have the potential to cross the placenta during gestation. Foetal exposure to CNS-targeting antibodies could alter developing neuronal circuits, leading to disease. However, the consequences of exposure to these antibodies during neurodevelopment has hardly been considered. To study the relationship between maternal antibodies towards neuronal surface proteins and neurodevelopmental disorders in the foetus a dual approach was undertaken. First, pregnancy serum samples from mothers of children later diagnosed with a neurodevelopmental disorder and from mothers of children with typical development were screened for the presence of neuronal surface antibodies. Next, the effects of pathogenic neuronal surface antibodies in the offspring were assessed in a maternal-to-foetal transfer mouse model. Antibodies to neuronal surface proteins in the gestational serum, particularly CASPR2 antibodies, were found to associate with an increased risk of mental retardation and disorders of psychological development in the progeny. The animal model showed that mice exposed in utero to CASPR2 antibodies have long term behavioural sequelae and histological findings suggestive of abnormalities in brain development. These findings support a model in which maternal antibodies towards foetal neuronal proteins cause long-term behavioural deficits and permanent abnormalities at the cellular and synaptic level in a subset of children with neurodevelopmental disorders.
Style APA, Harvard, Vancouver, ISO itp.
7

Hüppi, Petra Susan. "Serum antibodies to central nervous system antigens /". [S.l : s.n.], 1986. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Radke, James Melvin. "Studies involving somatostatin systems in the rodent central nervous system". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26518.

Pełny tekst źródła
Streszczenie:
Somatostatin is a neuropeptide found throughout the brain. Several studies have established its anatomical distribution as being quite heterogenous with relatively high concentrations appearing in the limbic and striatal systems. Presently, very little is known about the functions of somatostatin systems in the brain and how they interact with other transmitter systems. The following report is a summary of experiments undertaken to assess the functional and chemical interactions of somatostatin with other neurotransmitter systems. Previous studies have established that the dopaminergic inputs to the basal ganglia are important for locomotor activity and reward. These systems have also been implicated in several mental and neural diseases such as schizophrenia, depression, and Parkinson’s disease. In the first experiment, interactions between dopamine and somatostatin systems were examined using paradigms involving behavioural responses to dopamine agonists. Depletion of somatostatin levels by the drug cysteamine was found to attenuate amphetamine- and apomorphine-mediated motor behaviours but not the reinforcing aspects of amphetamine. The second experiment attempted to further characterize the nature of the dopamine-somatostatin interaction by examining the effects of haloperidol, a dopamine antagonist, on central somatostatin levels. Short term treatment with haloperidol decreased striatal somatostatin levels. Long term treatment (8 months) with haloperidol failed to alter somatostatin levels in the caudate-putamen. Since somatostatin levels appear to be normal in Parkinsonian brains, the effects of MPTP poisoning in mice on central somatostatin levels was also studied to examine the accuracy of this animal model of Parkinson's disease and examine the effects of dopaminergic lesions on somatostatin levels. The results of this experiment indicate that MPTP causes a dose dependent increase in nigral somatostatin levels without altering striatal or cortical levels. These results are in partial disagreement with results obtained from both post-mortem Parkinsonian brains and primates given MPTP, thereby questioning the accuracy of this mouse model of Parkinson's disease. The final experiment examined the effects of the anticonvulsant-antidepressant carbamazepine on central somatostatin levels in the rat. Although the chemical mechanisms responsible for the therapeutic effects of carbamazepine are unknown, previous studies have suggested that its efficacy in the treatment of both manic-depression and epilepsy may be associated with the ability of this drug to reduce the abnormal somatostatin levels observed in these diseases. In this experiment, neither acute, chronic, nor withdrawal from chronic treatment with carbamazepine were found to alter the levels of somatostatin in rats. The lack of effects of carbamazepine on basal somatostatin levels may indicate somatostatin cells are susceptible to carbamazepine only under pathological situations. Together, these results are discussed in the context of recent observations of abnormal somatostatin levels in several diseases of the central nervous system and provide some insight into the interactions and functions of somatostatin systems in the normal and abnormal brain.
Medicine, Faculty of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
9

Lothian, Carina. "Nestin regulation in the embryonic and adult CNS /". Stockholm : [Karolinska institutets bibl.], 2001. http://diss.kib.ki.se/2001/91-7349-057-1/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Eckert, Bodil. "Hypoglycaemia studies on central and peripheral nerve function /". Lund : Dept. of Internal Medicine, University of Lund, 1998. http://catalog.hathitrust.org/api/volumes/oclc/57426099.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Central nervous system"

1

Emerich, Dwaine F., Reginald L. Dean i Paul R. Sanberg, red. Central Nervous System Diseases. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-691-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ahluwalia, Manmeet, Philippe Metellus i Riccardo Soffietti, red. Central Nervous System Metastases. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-23417-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ramakrishna, Rohan, Rajiv S. Magge, Ali A. Baaj i Jonathan P. S. Knisely, red. Central Nervous System Metastases. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42958-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kryzhanovsky, G. N. Central Nervous System Pathology. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-7870-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Allen, Deborah Hutchinson, i Laurie L. Rice. Central nervous system cancers. Pittsburgh, Pa: Oncology Nursing Society, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lacruz, César R., red. Central Nervous System Tumors. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-51078-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Michael-Titus, Adina. The nervous system. Edinburgh: Churchill Livingstone, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gorodetskiy, Andrey E., i Vugar G. Kurbanov, red. Smart Electromechanical Systems: The Central Nervous System. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53327-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wilkinson, Ashley E., Aleesha M. McCormick i Nic D. Leipzig. Central Nervous System Tissue Engineering. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02582-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ballanyi, Klaus, red. Isolated Central Nervous System Circuits. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-020-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Central nervous system"

1

Elgazzar, Abdelhamid H., i Ismet Sarikaya. "Central Nervous System". W Nuclear Medicine Companion, 219–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76156-5_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mino, Miriame, Krisztian Homicsko i Roger Stupp. "Central Nervous System". W Side Effects of Medical Cancer Therapy, 293–331. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-787-7_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Elgazzar, Abdelhamid H. "Central Nervous System". W Synopsis of Pathophysiology in Nuclear Medicine, 273–89. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03458-4_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Klingensmith, William C. "Central Nervous System". W The Mathematics and Biology of the Biodistribution of Radiopharmaceuticals - A Clinical Perspective, 161–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26704-3_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Yu, Yao, Steve E. Braunstein, Daphne A. Haas-Kogan i Jean L. Nakamura. "Central Nervous System". W Handbook of Evidence-Based Radiation Oncology, 37–105. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62642-0_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Timperley, W. R., J. M. MacKenzie i S. F. D. Robinson. "Central nervous system". W Reporting Histopathology Sections, 366–79. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-7132-6_23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Schulz, Volker, Rudolf Hänsel i Varro E. Tyler. "Central Nervous System". W Rational Phytotherapy, 41–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-98093-0_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schulz, Volker, Rudolf Hänsel, Mark Blumenthal i Varro E. Tyler. "Central Nervous System". W Rational Phytotherapy, 43–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09666-6_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Smith, Joseph F. "Central Nervous System". W Paediatric Pathology, 125–94. London: Springer London, 1989. http://dx.doi.org/10.1007/978-1-4471-3337-7_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Paulley, J. W., i H. E. Pelser. "Central Nervous System". W Psychological Managements for Psychosomatic Disorders, 155–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73731-2_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Central nervous system"

1

Henoch-Schönlein Purpura, A., Gabriele Simonini, Eleonora Fusco, Ilaria Maccora, Anna Rosati, Rolando Cimaz i Teresa Giani. "AB1015 CENTRAL NERVOUS SYSTEM VASCULITIS PRECEDING". W Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.4663.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Guck, Jochen R. "Optomechanical insights into the central nervous system". W Optical Elastography and Tissue Biomechanics VIII, redaktorzy Kirill V. Larin i Giuliano Scarcelli. SPIE, 2021. http://dx.doi.org/10.1117/12.2578567.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Moreira, Laila Prazeres Schulz, Daniela Fernanda Almeida Santos, Guilherme Cordaro Bucker Furini, Isabela Bartholomeu Ferreira da Costa, Saul Didmar Alquez Montano, Amanda Póvoa de Paiva, Maiave Micalle Figueiredo de Matos, Maria Avanise Yumi Minami i Ana Paula Andrade Hamad. "Central nervous system complications of pediatric sinusitis". W SBN Conference 2022. Thieme Revinter Publicações Ltda., 2023. http://dx.doi.org/10.1055/s-0043-1774460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Correa, S., R. Nahar, B. D. Smighelschi, V. Vulkanov i K. Guevarra. "Amidst Mimickers: Primary Central Nervous System Vasculitis". W American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a5613.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Barač, Anja, Ivona Jerković i Petra Nimac Kozina. "Primary angiitis of the central nervous system (PACNS)". W NEURI 2015, 5th Student Congress of Neuroscience. Gyrus JournalStudent Society for Neuroscience, School of Medicine, University of Zagreb, 2015. http://dx.doi.org/10.17486/gyr.3.2223.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wodarcyk, A. J., i J. G. Wang. "Extensive Central Nervous System Nocardiosis Without Neurologic Manifestations". W American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hartwell, Peter. "CeNSE: A central nervous system for the earth". W 2011 IEEE Technology Time Machine (TTM). IEEE, 2011. http://dx.doi.org/10.1109/ttm.2011.6005162.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shahidi, Ghavam G. "CeNSE: A central nervous system for the earth". W 2011 IEEE Technology Time Machine (TTM). IEEE, 2011. http://dx.doi.org/10.1109/ttm.2011.6005165.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Prestes, Ana Clarice Bartosievicz, Sergio Antonio Antoniuk, Mara Lucia Schmitz Ferreira Santos, Adriano Kejiro Maeda, Ana Paula Kuczynski Pedro Bom i Victor Horácio de Souza Costa Junior. "Central nervous system juvenile xantogranuloma: a case report". W SBN Conference 2022. Thieme Revinter Publicações Ltda., 2023. http://dx.doi.org/10.1055/s-0043-1774565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Disserol, Caio, Alessandra Filpo, Taís Luise Denicol, Bruno Della-Ripa, Francine Mendonça, Rodrigo de Faria Ferreira i Marcos Christiano Lange. "Thromboembolic Central Nervous System Complications of COVID-19". W XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.492.

Pełny tekst źródła
Streszczenie:
Context: COVID-19 is well-known to increase the risk of developing thromboembolism; thus, patients may present with diverse neurovascular manifestations. Case report: A 56-year-old man presented with sudden onset of incoordination of his left arm and leg. He also had a history of recurrent episodes of transient left hemithoracic pain radiating to his left arm, along with right visual hemi-field positive phenomena. Additionally, he reported self-limited fever and anosmia three weeks earlier. Examination revealed left hemiataxia (NIHSS score: 2). Initial assessment with brain CT, intracranial and cervical CT angiography was normal. Shortly after admission, the patient developed acute weakness of his four limbs and urinary retention. Neurological exam showed left homonimous hemianopia, asymmetric tetraparesis and a superficial sensory level at C4. Neuraxis MRI was performed and diffusion-weighted imaging revealed acute ischemic lesions in the occiptal lobes, cerebellum and cervicalthoracic spine. A thorough diagnostic work-up was conducted. Laboratory tests were unremarkable, including inflammatory markers, viral hepatitis, HIV and syphilis serologies, as well as rheumatologic tests and a thrombophilia panel, except for SARS-COV-2 serology, with detection of IgM antibodies. RT-PCR nasopharyngeal swab was negative. Further investigation with CSF analysis, CT angiography of the aorta, transthoracic echocardiogram, 24-hour holter monitoring and transcranial Doppler didn’t show any abnormalities. Transesophageal echocardiogram revelead a minor patent foramen ovale. Conclusion: This is a case of acute cerebral, cerebellar and spinal embolic infarction, probably related to Covid-19, illustrating the infection’s associated coagulopathy¹.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Central nervous system"

1

Ridgway, Sam H. The Cetacean Central Nervous System. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1999. http://dx.doi.org/10.21236/ada381704.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Albquerque, Edson X. Molecular Targets for Organophosphates in the Central Nervous System. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2004. http://dx.doi.org/10.21236/ada426356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rowland, Vernon, i Henry Gluck. Attention and Preparatory Processes in the Central Nervous System. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1986. http://dx.doi.org/10.21236/ada171316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Butler, F. K., i Jr. Central Nervous System Oxygen Toxicity in Closed-Circuit Scuba Divers. Fort Belvoir, VA: Defense Technical Information Center, marzec 1986. http://dx.doi.org/10.21236/ada170879.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Clark, J. M., i C. J. Lambertsen. Extension of Central Nervous and Visual System Oxygen Tolerance in Physical Work. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1990. http://dx.doi.org/10.21236/ada239160.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mery, Laura, Matthew Wayner, John McQuade i Erica Anderson. Characterization of the Effects of Fatigue on the Central Nervous System (CNS) and Drug Therapies. Fort Belvoir, VA: Defense Technical Information Center, listopad 2007. http://dx.doi.org/10.21236/ada489794.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Catlin, Kristen M. Role of Cytokines and Neurotrophins in the Central Nervous System in Venezuelan Equine Encephalitis Pathogenesis. Fort Belvoir, VA: Defense Technical Information Center, luty 2001. http://dx.doi.org/10.21236/ad1012369.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Li, Yanming, Zhigang Zhao i Yuanbo Liu. Combined chemotherapy in new diagnosed primary central nervous system lymphoma: a systematic review and network meta‑analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, wrzesień 2020. http://dx.doi.org/10.37766/inplasy2020.9.0084.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Carpenter, A. V., W. D. Flanders, E. L. Frome, D. J. Crawford-Brown i S. A. Fry. Radiation exposure and central nervous system cancers: A case-control study among workers at two nuclear facilities. Office of Scientific and Technical Information (OSTI), marzec 1987. http://dx.doi.org/10.2172/6646019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Marchionni, Enrica, Daniele Guadagnolo, Gioia Mastromoro i Antonio Pizzuti. Diagnostic yield of prenatal Exome Sequencing in fetal Central Nervous System Anomalies: systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maj 2023. http://dx.doi.org/10.37766/inplasy2023.5.0003.

Pełny tekst źródła
Streszczenie:
Review question / Objective: The aim of this study is to assess the incremental diagnostic yield of prenatal exome sequencing analysis after inconclusive result of karyotype and Chromosomal Microarray Analysis in Central Nervous System fetal anomalies detected by ultrasound. Eligibility criteria: Inclusion criteria: papers describing fetuses with the indication to perform genome-wide sequencing studies based on prenatal imaging findings who underwent previous inconclusive karyotype and Chromosomal Microarray Analyses. The diagnostic yields of prenatal exome sequencing analysis OR prenatal genome sequencing analysis (with ≥20–30x depth of coverage and including only Single Nucleotide Variants) will be pooled in a meta-analysis. Exclusion Criteria: case reports and papers describing less than 5 cases; papers not describing the application of genome-wide sequencing studies based on prenatal imaging findings; papers describing genome-wide sequencing studies performed after negative targeted panels; papers describing fetuses with recurrent phenotypes as an explicitly selection criterium.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii