Gotowa bibliografia na temat „Cementious materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cementious materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cementious materials"
Uma Maheshwari, K., i N. Venkat Rao. "Effect of Cementious Materials on Corrsion in Carbonated Concrete". IOP Conference Series: Earth and Environmental Science 1086, nr 1 (1.09.2022): 012003. http://dx.doi.org/10.1088/1755-1315/1086/1/012003.
Pełny tekst źródłaXie, Guo Hua, He Qing Du, Shu Jing Zhu i Yong Jie Xue. "Novel Cementious Materials from Industrial Solid Waste for Silt Soil Solidification". Advanced Materials Research 150-151 (październik 2010): 711–18. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.711.
Pełny tekst źródłaWang, Kang, Yu Ping Zhang, Ting Wei Cao, Jie Zhang i Zhong He Shui. "Effect of Modified Metakaolin on Water Content of Hardened Cementitious Materials of Concrete". Key Engineering Materials 599 (luty 2014): 29–33. http://dx.doi.org/10.4028/www.scientific.net/kem.599.29.
Pełny tekst źródłaNiu, Hui, Kai Yang, Ke Bin Zhao i Huan Zheng Chi. "Experimental Study on Improving the early Strength of Fly Ash Concrete". Advanced Materials Research 168-170 (grudzień 2010): 1943–46. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.1943.
Pełny tekst źródłaSharkawi, Aladdin M., Metwally A. Abd-Elaty i Omar H. Khalifa. "Synergistic influence of micro-nano silica mixture on durability performance of cementious materials". Construction and Building Materials 164 (marzec 2018): 579–88. http://dx.doi.org/10.1016/j.conbuildmat.2018.01.013.
Pełny tekst źródłaFUKUSHIMA, Yuta, Takayasu ITO, Masashi OSAKI i Tsuyoshi SAITO. "APPLICATION OF CALCINED CLAY CONTAINING ALLOPHANE AND HALLOYSITE AS A SUPPLYMENTARY CEMENTIOUS MATERIALS". Cement Science and Concrete Technology 77, nr 1 (29.03.2024): 550–57. http://dx.doi.org/10.14250/cement.77.550.
Pełny tekst źródłaWang, Xue, i Yuan Chen Guo. "A Summary of Strength Formation Mechanism of Light Wall Material". Applied Mechanics and Materials 217-219 (listopad 2012): 1099–102. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1099.
Pełny tekst źródłaWang, Xue, i Yuan Chen Guo. "Experimental Research on Strengthen Mechanism of NaOH on Light Wall Materials Prepared from Crushed Brick Powder". Advanced Materials Research 535-537 (czerwiec 2012): 1657–60. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1657.
Pełny tekst źródłaShe, An Ming, Wu Yao i Wan Cheng Yuan. "Evolution of Various States of Water in Blended Cementitious Materials". Applied Mechanics and Materials 193-194 (sierpień 2012): 389–92. http://dx.doi.org/10.4028/www.scientific.net/amm.193-194.389.
Pełny tekst źródłaLi, Xiong Hao, Yong Jie Xue i Min Zhou. "Experimental Study on Utilization FGD Byproducts in Building Bricks". Advanced Materials Research 150-151 (październik 2010): 753–57. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.753.
Pełny tekst źródłaRozprawy doktorskie na temat "Cementious materials"
Danché, Valentine. "Impression 3D par liaison sélective de béton de chanvre". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1286.
Pełny tekst źródła3D printing is experiencing a significant rise in the construction industry, paving the way for the expected digitalization of the sector. As new techniques are explored to combine technical optimization and CO2 emission reduction, this study focuses on powder-bed 3D printing. Despite still being relatively niche, this method could facilitate printing with a high natural fiber content, thus taking a further step towards carbon neutrality. The process is simple, involving three iterative steps : depositing a layer of reactive powder, compacting it, and then injecting water onto the surface.Hence, controlling water penetration into the powder is crucial to improve print quality. The objective is to confine the available water to the desired area, ensuring optimal binder hydration and preventing leaching from previous layers. Several factors may limit penetration depth, including the physical properties of the powder (compactness, permeability) and those of the injected fluid (surface tension, viscosity, yield stress) to study their impact on the kinetics of water propagation on the surface and within the powder. Consequently, we examined the vertical water propagation kinetics in compacted cementitious powder samples. To better simulate the phenomena occurring within the printer, vertical imbibition in both penetration directions was monitored through image analysis and MRI, providing additional insights into the quantity and distribution of water in the samples.Following the development of a versatile setup, we investigated pure powders (such as cement, calcite, metakaolin, sand) and those containing porous aggregates (recycled cement paste or micronized hemp shives) to better understand their impact on water penetration in a bio-sourced printable powder. Indeed, this technique sheds new light with a saturation sensibility and, when combined with MRI, water transfers between the matrix and porous aggregates. Natural porous aggregates like hemp are well-known to affect water distribution as they absorb and swell on contact with water. The results indicate that kinetics do not always slow down over time which opens discussions on the validity of Washburn's Law, commonly used to describe water propagation phenomena in porous media.Finally, the complete development of a powder-bed 3D printer has enabled the printing of cubes, which will facilitate the study of the influence of printing parameter choices (injection type and compactness) on part geometry. We will then be able to consider biobased materials as a possible tool for improving printing precision
Houk, Alexander Nicholas. "SELF-SENSING CEMENTITIOUS MATERIALS". UKnowledge, 2017. https://uknowledge.uky.edu/ce_etds/58.
Pełny tekst źródłaIsaacs, Ben. "Self-healing cementitious materials". Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/54220/.
Pełny tekst źródłaPheeraphan, Thanakorn. "Microwave curing of cementitious materials". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12174.
Pełny tekst źródłaPeach, Benjamin. "Laser scabbling of cementitious materials". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11853/.
Pełny tekst źródłaBrown, Nicholas John. "Discrete element modelling of cementitious materials". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8011.
Pełny tekst źródłaRad, Taghi. "Microstructural characteristics of recycled cementitious materials". Thesis, University of Hertfordshire, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340038.
Pełny tekst źródłaBolton, Mark William. "Soil Improvement Using Optimised Cementitous Materilas Design". Thesis, Griffith University, 2014. http://hdl.handle.net/10072/365243.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Mihai, Iulia. "Micromechanical constitutive models for cementitious composite materials". Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/24624/.
Pełny tekst źródłaValori, Andrea. "Characterisation of cementitious materials by 1H NMR". Thesis, University of Surrey, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510562.
Pełny tekst źródłaKsiążki na temat "Cementious materials"
Pöllmann, Herbert, red. Cementitious Materials. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728.
Pełny tekst źródłaMalhotra, V. M. Pozzolanic and cementitious materials. Amsterdam, The Netherlands: Gordon and Breach, 1996.
Znajdź pełny tekst źródłaDeHayes, SM, i D. Stark, red. Petrography of Cementitious Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1994. http://dx.doi.org/10.1520/stp1215-eb.
Pełny tekst źródła1953-, DeHayes Sharon M., Stark D i Symposium on the Petrography of Cementitious Materials (1993 : Atlanta, Ga.), red. Petrography of cementitious materials. Philadelphia, PA: ASTM, 1994.
Znajdź pełny tekst źródłaConference on Advances in Cementitious Materials (1990 Gaithersburg, Md.). Advances in cementitious materials. Westerville, Ohio: American Ceramic Society, 1991.
Znajdź pełny tekst źródłaSoltesz, Steven M. Cementitious materials for thin patches. Salem, OR: Oregon Dept. of Transportation, Research Group, 2001.
Znajdź pełny tekst źródłaPijaudier-Cabot, Gilles. Damage mechanics of cementitious materials. London: ISTE, 2012.
Znajdź pełny tekst źródła1946-, Mai Y. W., red. Fracture mechanics of cementitious materials. London: Blackie Academic & Professional, 1996.
Znajdź pełny tekst źródłaRahman, Rehab O. Abdel, Ravil Z. Rakhimov, Nailia R. Rakhimova i Michael I. Ojovan. Cementitious Materials for Nuclear Waste Immobilization. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118511992.
Pełny tekst źródłaDe Schutter, Geert, i Karel Lesage. Active Rheology Control of Cementitious Materials. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003289463.
Pełny tekst źródłaCzęści książek na temat "Cementious materials"
Gdoutos, Emmanuel E. "Cementitious Materials". W Fracture Mechanics, 387–401. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_14.
Pełny tekst źródłaDe la Torre, Ángeles G., Isabel Santacruz, Laura León-Reina, Ana Cuesta i Miguel A. G. Aranda. "1. Diffraction and crystallography applied to anhydrous cements". W Cementitious Materials, redaktor Herbert Pöllmann, 3–30. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-002.
Pełny tekst źródłaAranda, Miguel A. G., Ana Cuesta, A. G. De la Torre, Isabel Santacruz i Laura León-Reina. "2. Diffraction and crystallography applied to hydrating cements". W Cementitious Materials, redaktor Herbert Pöllmann, 31–60. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-003.
Pełny tekst źródłaRaab, Bastian, i Herbert Pöllmann. "3. Synthesis of highly reactive pure cement phases". W Cementitious Materials, redaktor Herbert Pöllmann, 61–102. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-004.
Pełny tekst źródłaLothenbach, Barbara, i Frank Winnefeld. "4. Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements". W Cementitious Materials, redaktor Herbert Pöllmann, 103–44. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-005.
Pełny tekst źródłaArtioli, G., M. Secco, A. Addis i M. Bellotto. "5. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating". W Cementitious Materials, redaktor Herbert Pöllmann, 147–58. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-006.
Pełny tekst źródłaKaden, R., i H. Poellmann. "6. Setting control of CAC by substituted acetic acids and crystal structures of their calcium salts". W Cementitious Materials, redaktor Herbert Pöllmann, 159–90. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-007.
Pełny tekst źródłaStöber, S., i H. Pöllmann. "7. Crystallography and crystal chemistry of AFm phases related to cement chemistry". W Cementitious Materials, redaktor Herbert Pöllmann, 191–250. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-008.
Pełny tekst źródłaGao, X., B. Yuan, Q. L. Yu i H. J. H. Brouwers. "8. Chemistry, design and application of hybrid alkali activated binders". W Cementitious Materials, redaktor Herbert Pöllmann, 253–84. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-009.
Pełny tekst źródłaPritzel, Christian, Torsten Kowald, Yilmaz Sakalli i Reinhard Trettin. "9. Binding materials based on calcium sulphates". W Cementitious Materials, redaktor Herbert Pöllmann, 285–310. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-010.
Pełny tekst źródłaStreszczenia konferencji na temat "Cementious materials"
Tamura, Masaki, i Yumi Ohiwa. "Use-Stage Environmental Performances of Cementious-Woodchip Compound Products Considering Resilience Measures in Disaster Situation". W Fourth International Conference on Sustainable Construction Materials and Technologies. Coventry University, 2016. http://dx.doi.org/10.18552/2016/scmt4s172.
Pełny tekst źródłaHegyi, Andreea. "THE EFFECT OF TIO2 ON THE PROPERTIES OF CEMENTIOUS COMPOSITE MATERIALS �THE CURRENT STATE-OF-THE ART". W 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/6.3/s26.051.
Pełny tekst źródłaZhang, Emma Qingnan, Luping Tang i Thomas Zack. "Carbon Fiber as Anode Material for Cathodic Prevention in Cementitious Materials". W International Conference on the Durability of Concrete Structures. Purdue University Press, 2016. http://dx.doi.org/10.5703/1288284316149.
Pełny tekst źródłaGarcía-González, J., P. Lemos, A. Pereira, J. Pozo, M. Guerra-Romero, A. Juan-Valdés i P. Faria. "Biodegradable Polymers on Cementitious Materials". W XV International Conference on Durability of Building Materials and Components. CIMNE, 2020. http://dx.doi.org/10.23967/dbmc.2020.017.
Pełny tekst źródła"Supplementary Cementitious Materials for Sustainability". W SP-269: Concrete: The Sustainable Material Choice. American Concrete Institute, 2010. http://dx.doi.org/10.14359/51663719.
Pełny tekst źródła"Influence of Supplementary Cementitious Materials on the Autogenous Self-Healing of Cracks in Cementitious Materials". W SP-320:10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete. American Concrete Institute, 2017. http://dx.doi.org/10.14359/51701050.
Pełny tekst źródłaCoulbeck, Teig S. V., Isaac P. G. Hammond, Christopher J. Gooding, James K. Wither, Iasmi Sterianou, Dimitra Soulioti i Evangelos Z. Kordatos. "Development of self-sensing cementitious materials". W Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, redaktorzy Kerrie Gath i Norbert G. Meyendorf. SPIE, 2020. http://dx.doi.org/10.1117/12.2558875.
Pełny tekst źródła"Alternative Cementitious Materials: Challenges And Opportunities". W SP-305: Durability and Sustainability of Concrete Structures. American Concrete Institute, 2015. http://dx.doi.org/10.14359/51688587.
Pełny tekst źródłaNěmeček, J., J. Němečková i J. Němeček. "Micro-Scale Creep of Cementitious Materials". W Engineering Mechanics 2024. Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, 2024. http://dx.doi.org/10.21495/em2024-214.
Pełny tekst źródłaRam, Prashant, Kurt Smith, Ayesha Shah, Jan Olek i Myungook Kang. "Performance of Non-Cementitious Repair Materials for Concrete Pavement Partial-Depth Repairs in Wisconsin". W 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/plpdwoy3.
Pełny tekst źródłaRaporty organizacyjne na temat "Cementious materials"
Wijaya, Ignasius P. A., Eric Kreiger i Asuf Masud. An elastic-inelastic model and embedded bounce-back control for layered printing with cementitious materials. Engineer Research and Development Center (U.S.), styczeń 2024. http://dx.doi.org/10.21079/11681/48091.
Pełny tekst źródłaGroeneveld, Andrew, i C. Crane. Advanced cementitious materials for blast protection. Engineer Research and Development Center (U.S.), kwiecień 2023. http://dx.doi.org/10.21079/11681/46893.
Pełny tekst źródłaUcak-Astarlioglu, Mine, Jedadiah Burroughs, Charles Weiss, Kyle Klaus, Stephen Murrell, Samuel Craig, Jameson Shannon, Robert Moser, Kevin Wyss i James Tour. Graphene in cementitious materials. Engineer Research and Development Center (U.S.), grudzień 2023. http://dx.doi.org/10.21079/11681/48033.
Pełny tekst źródłaSugama, T., i T. ,. Lance Brothers, Bour, D. Butcher. Self-degradable Cementitious Sealing Materials. Office of Scientific and Technical Information (OSTI), październik 2010. http://dx.doi.org/10.2172/993804.
Pełny tekst źródłaThornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing i Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), listopad 2020. http://dx.doi.org/10.21079/11681/38721.
Pełny tekst źródłaOlek, Jan, i Chaitanya Paleti. Compatibility of Cementitious Materials and Admixtures. Purdue University, grudzień 2012. http://dx.doi.org/10.5703/1288284315025.
Pełny tekst źródłaRoesler, Jeffery, Sachindra Dahal, Dan Zollinger i W. Jason Weiss. Summary Findings of Re-engineered Continuously Reinforced Concrete Pavement: Volume 1. Illinois Center for Transportation, maj 2021. http://dx.doi.org/10.36501/0197-9191/21-011.
Pełny tekst źródłaFlach, G. P. Degradation of Saltstone Disposal Unit Cementitious Materials. Office of Scientific and Technical Information (OSTI), sierpień 2018. http://dx.doi.org/10.2172/1513682.
Pełny tekst źródłaChandler, Mei, William Lawrimore, Micael Edwards, Robert Moser, Jameson Shannon i James O'Daniel. Mesoscale modeling of cementitious materials : phase I. Engineer Research and Development Center (U.S.), czerwiec 2019. http://dx.doi.org/10.21079/11681/32980.
Pełny tekst źródłaLomboy, Gilson, Douglas Cleary, Seth Wagner, Yusef Mehta, Danielle Kennedy, Benjamin Watts, Peter Bly i Jared Oren. Long-term performance of sustainable pavements using ternary blended concrete with recycled aggregates. Engineer Research and Development Center (U.S.), maj 2021. http://dx.doi.org/10.21079/11681/40780.
Pełny tekst źródła