Gotowa bibliografia na temat „Cellulose acetate butyrate Protic ionic liquid”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cellulose acetate butyrate Protic ionic liquid”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Cellulose acetate butyrate Protic ionic liquid"

1

Huang, Kelin, Ben Wang, Yan Cao, Huiquan Li, Jinshu Wang, Weijiang Lin, Chaoshi Mu i Dankui Liao. "Homogeneous Preparation of Cellulose Acetate Propionate (CAP) and Cellulose Acetate Butyrate (CAB) from Sugarcane Bagasse Cellulose in Ionic Liquid". Journal of Agricultural and Food Chemistry 59, nr 10 (25.05.2011): 5376–81. http://dx.doi.org/10.1021/jf104881f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cao, Yan, Huiquan Li i Jun Zhang. "Homogeneous Synthesis and Characterization of Cellulose Acetate Butyrate (CAB) in 1-Allyl-3-Methylimidazolium Chloride (AmimCl) Ionic Liquid". Industrial & Engineering Chemistry Research 50, nr 13 (6.07.2011): 7808–14. http://dx.doi.org/10.1021/ie2004362.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Baird, Zachariah Steven, Petri Uusi-Kyyny, Artur Dahlberg, Daniel Cederkrantz i Ville Alopaeus. "Densities, Viscosities, and Thermal Conductivities of the Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water". International Journal of Thermophysics 41, nr 12 (1.10.2020). http://dx.doi.org/10.1007/s10765-020-02742-4.

Pełny tekst źródła
Streszczenie:
Abstract 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium acetate (mTBD acetate) is a protic ionic liquid that is being investigated for use in industrial processes, such as for producing textiles from cellulose. To aid in designing such processes, we have measured the densities, viscosities, and thermal conductivities of mTBD acetate and aqueous mixtures containing mTBD acetate. We also investigated how excess amounts of mTBD or acetic acid affect the density, and found that in general an excess of either component decreases the density. However, when no water is present, the sample with excess acetic acid actually has a slightly higher density than when there is an equimolar amount of acid and base. The maximum density occurs when some water is present (around 30–40 mol%). We also modeled the density data using the ePC-SAFT equation of state and provide simple correlations for calculating the viscosity and thermal conductivity of these mixtures.
Style APA, Harvard, Vancouver, ISO itp.
4

Pitaloka, Nadya Fitriani, Ardilla Sriwijayanti, Santi Anisa i Irne Dyah Ayu Wijayanti. "Utilization Of Sugarcane Bagasse Cellulose-Clay Nanocomposite As A Biodegradable And Antibacterial Packaging Material To Extend The Food's Shelf Life". Khazanah: Jurnal Mahasiswa 12, nr 2 (13.12.2020). http://dx.doi.org/10.20885/khazanah.vol12.iss2.art43.

Pełny tekst źródła
Streszczenie:
Food packaging materials derived from fossil fuels are single-use products that harm the health of living things when disposed of by releasing toxic byproducts. Many communities are starting to be more environmentally friendly by using biopolymers. However, some biopolymers do not have antibacterial properties, thus shortening the food’s shelf life and not applicable in food packaging. Therefore, the purpose of this work is to develop a biodegradable and antimicrobial food packaging from sugarcane bagasse and clay that degrades over time without compromising the food’s shelf life. Cellulose acetate butyrate (cab) was prepared in an amimcl ionic liquid system from sugarcane bagasse. Then the cab was plasticized using peg, resulting a film. Besides, montmorillonite (mmt) clay was modified with aryl ammonium cations using a cation exchange technique to form bmmt. The nanocomposite film was prepared by mixing the plasticized cab and bmmt, then heated at 50c to evaporate the solution. The nanocomposite film was obtained as a prototype of food packaging. Several tests were conducted including mechanical properties, water vapor permeability (wvp), antimicrobial and toxicity test. Based on research by saha et.al, 2008, the nanocomposite film with the cag, peg and bmmt 100:20:3 composition gave the best mechanical properties because of the agglomeration of bmmt. Also, the nanocomposite film had promising wvp properties as a plastic because the clay layers reduced the water vapor diffusion across the polymer matrix. The toxicity test showed that this nanocomposite film was compatible in human blood. Lastly, this nanocomposite film has antibacterial activity against b. Subtilis and p. Cepacia because of the bmmt presence. In conclusion, the nanocomposite film from sugarcane bagasse and clay containing cag, peg and bmmt 100:20:3 is a promising material for a biodegradable and antimicrobial food packaging, because it has sufficient mechanical properties, antibacterial activity, low wvp and is non-toxic.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Cellulose acetate butyrate Protic ionic liquid"

1

Ebrahimi, Mohammad. "Hybrid membranes based on iοnic liquids for application in fuel cells". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR029.

Pełny tekst źródła
Streszczenie:
La pile à combustible à membrane échangeuse de protons (PEMFC) suscite beaucoup d’intérêts dans le milieu académique et dans l’industrie, puisqu’ elle est considérée comme une source d’énergie verte. La membrane électrolytique polymère (PEM), responsable du transport des protons entres les électrodes, est la partie la plus importante de la PEMFC. Le Nafion® est le polymère le plus couramment utilisé en tant que PEM du fait de ses bonnes stabilités thermique, mécanique et chimique ainsi qu'une conductivité ionique élevée. Ce polymère présente d’excellentes performances à des températures inférieures à 80 °C et dans les conditions humidifiées. Cependant, pour augmenter la vitesse de la réaction et éviter l’empoisonnement du Pt, l’utilisation de la PEMFC à des températures élevées est recommandée. En revanche, dans ces conditions, la conductivité ionique de Nafion® diminue considérablement en raison de sa déshydratation Pour obtenir des PEMs pouvant être utilisées à des températures élevées et dans des conditions anhydres, des liquides ioniques (LIs) jouant le rôle de conducteurs protoniques sont envisagés. L’objectif de cette thèse était de synthétiser des nouveaux LIs thermiquement stables et conducteurs et de les utiliser comme agent de transport pour concevoir des membranes conductrices de protons pour une application PEMFC à température élevée.Plusieurs LIs protiques (LIs-Pr) contenant différents anions ([TFS]-, [TFA]-, [HS]-, [BUPH]- et [EHPH]) et cations ([DETA]-, [DEPA]-, [MIM]- et [BIM]) ont été synthétisés via une réaction de neutralisation acido-basique. Les résultats d’analyse thermogravimétrique ont montré qu’il existe un lien direct entre l’acidité de l’acide utilisé et la stabilité thermique du LI – les LIs à base de [TFS] présentent les plus grandes stabilités thermiques (Tdeg ~ 415−435 °C) étant donné l’acidité élevée de l’acide trifluorométhanesulfonique (pKa ~ -14). Les valeurs de conductivité ionique les plus élevées (~ 34.5 à 63.7 mS•cm-1 à 150 °C) ont été obtenues pour les LIs à base de [TFS], du fait du caractère plus acide de du TFS par rapport aux autres acides. D’après les données expérimentales, l’ordre de conductivité ionique est le suivant : [TFS] ˃ [HS] ˃ [TFA] ˃ [BUPH] ˃ [EHPH]. L’ensemble des résultats obtenus confirment que les LIs-Pr synthétisées ont un fort potentiel pour le développement des PEMFC. Cependant, en raison de l’état physique des LIs (solide dans la plupart des cas), il n’est pas possible de les utiliser comme électrolyte directement dans les PEMFC. Ce verrou peut-être levé par la mise au point de PEM à partir de membranes composites (polymère + LI).Les membranes composites à base de CAB/[DETA][TFS]-[DEPA][BUPH] (0, 23, 33 et 41 % en poids de LI – M0, M1, M2 et M3, respectivement) ont été préparées par une technique d’inversion de phase. La présence de LI dans la structure membranaire a été confirmée par les analyses IRTF et Rayons-X. L’analyse thermogravimétrique a permis de vérifier une stabilité thermique inférieure pour les membranes composites (Tdeg ~ 256–265 °C) par rapport à la membrane CAB pure (Tdeg ~ 360 °C). Des mesures d’impédance il résulte que les membranes composites possèdent une bonne conductivité ionique (0.1–1 mS•cm-1 à 120 °C). Comme attendu, l’augmentation de la proportion massique de LI de 23 à 41 % dans la membrane a conduit à une augmentation de la conductivité ionique des membranes composites. Aussi une augmentation de la conductivité ionique de la membrane liée à l’augmentation la température de fonctionnement (de 25 à 120 °C) a été vérifiée en raison de l’amélioration de la mobilité ionique. La membrane M3 a présenté la conductivité ionique la plus élevée – soit 0.443 mS•cm-1 à 120 °C dans des conditions anhydres. Tous les résultats obtenus attestent que les membranes composites à base de CAB/[DETA][TFS]-[DEPA][BUPH] sont des candidats prometteurs pour une utilisation dans des applications électrochimiques, notamment dans les piles à combustible
Proton exchange membrane fuel cell (PEMC) has attracted a lot of attention in the both, laboratories and industries because PEMFC is considered as the green source of energy. Polymer electrolyte membrane (PEM) is the most important part in PEMFC owing to the fact that it is responsible for carrying protons between electrodes. Nafion® is the most commonly used polymer for PEM preparation because of its good thermal, mechanical, and chemical stability as well as high ionic conductivity. This polymer has excellent performance at low up to moderate temperatures under humidified condition. However, working at elevated temperature is more desirable and under these conditions the ionic conductivity of Nafion® membrane drops down significantly owing to the water evaporation. To obtain PEMs which can be applied at higher temperatures under anhydrous conditions, ionic liquids (ILs) are used as the proton carrier. The aim of this PhD thesis was to synthesis thermally stable and conductive ILs and use them as the additive to prepare proton conductive membranes for PEMFC application at elevated temperature.Several Pr-ILs containing different anions ([TFS]-, [TFA]-, [HS]-, [BUPH]-, and [EHPH]-based) and cations ([DETA]-, [DEPA]-, [MIM]-, and [BIM]-based) were prepared by acid-base neutralization reaction. The dynamic TGA results showed that there is a direct link between the acidity of acid and thermal stability of IL and [TFS]-based ILs demonstrated the highest thermal stability (Tdeg ~ 415−435 °C) owing to the high acidity of trifluoromethanesulfonic acid (pKa ~ -14). [TFS]-based ILs showed the highest ionic conductivity values (~ 34.5−63.7 mS•cm-1 at 150 °C) because trifluoromethanesulfonic acid is a stronger acid as compared to the other used acids for IL synthesis. According to the results, the following ionic conductivity order of studied anions can be proposed: [TFS] ˃ [HS] ˃ [TFA] ˃ [BUPH] ˃ [EHPH]. The obtained results showed that synthesized Pr-ILs have great potential to be used in PEMFC application. However, owing to the physical state of ILs, it is not possible to use them alone as the electrolyte in PEMFC. In order to have ion conductive PEM, composite membranes (polymer + IL) must be prepared.CAB/[DETA][TFS]-[DEPA][BUPH] composite membranes were prepared by a phase inversion technique. Composite membranes containing 0, 23, 33, and 41 wt.% of ILs were prepared (M0, M1, M2, and M3, respectively) by the phase inversion method. The presence of ILs in the membrane was confirmed by FTIR and EDX analysis. Thermal analysis revealed the lower thermal stability of composite membranes (Tdeg ~ 256–265 °C) in comparison with pure CAB membrane (Tdeg ~ 360 °C). Composite membranes showed good ionic conductivity (0.1–1 mS•cm-1 at 120 °C) and it was found that an increase of ILs concentration from 23 to 41 wt.% resulted in rising the membrane ionic conductivity owing to the increase of conductive regions. Furthermore, membrane ionic conductivity increased by rising the operating temperature from 25 to 120 °C owing to the ionic mobility enhancement. M3 membrane showed the highest ionic conductivity of 0.443 mS•cm-1 at 120 °C under anhydrous condition. The results prove that the fabricated CAB/[DETA][TFS]-[DEPA][BUPH] composite membranes are promising candidates for using in electrochemical applications, namely fuel cell
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii