Artykuły w czasopismach na temat „Cellular Targeting, Imaging and Therapy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cellular Targeting, Imaging and Therapy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Guan, Jiankun, Yuxin Wu, Huimin Wang, Haowen Zeng, Zifu Li i Xiangliang Yang. "A DiR loaded tumor targeting theranostic cisplatin-icodextrin prodrug nanoparticle for imaging guided chemo-photothermal cancer therapy". Nanoscale 13, nr 46 (2021): 19399–411. http://dx.doi.org/10.1039/d1nr05824j.
Pełny tekst źródłaSerda, Rita E., Natalie L. Adolphi, Marco Bisoffi i Laurel O. Sillerud. "Targeting and Cellular Trafficking of Magnetic Nanoparticles for Prostate Cancer Imaging". Molecular Imaging 6, nr 4 (1.07.2007): 7290.2007.00025. http://dx.doi.org/10.2310/7290.2007.00025.
Pełny tekst źródłaJiang, Shan, Muthu Kumara Gnanasammandhan i Yong Zhang. "Optical imaging-guided cancer therapy with fluorescent nanoparticles". Journal of The Royal Society Interface 7, nr 42 (16.09.2009): 3–18. http://dx.doi.org/10.1098/rsif.2009.0243.
Pełny tekst źródłaSantoso, Michelle R., i Phillip C. Yang. "Magnetic Nanoparticles for Targeting and Imaging of Stem Cells in Myocardial Infarction". Stem Cells International 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/4198790.
Pełny tekst źródłaChen, Bin, Brian W. Pogue, P. Jack Hoopes i Tayyaba Hasan. "Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy". International Journal of Radiation Oncology*Biology*Physics 61, nr 4 (marzec 2005): 1216–26. http://dx.doi.org/10.1016/j.ijrobp.2004.08.006.
Pełny tekst źródłaJin, Zhao-Hui, Atsushi B. Tsuji, Mélissa Degardin, Pascal Dumy, Didier Boturyn i Tatsuya Higashi. "Multiplexed Imaging Reveals the Spatial Relationship of the Extracellular Acidity-Targeting pHLIP with Necrosis, Hypoxia, and the Integrin-Targeting cRGD Peptide". Cells 11, nr 21 (4.11.2022): 3499. http://dx.doi.org/10.3390/cells11213499.
Pełny tekst źródłaLiang, Zhiquan, Ziwen Lu, Yafei Zhang, Dongsheng Shang, Ruyan Li, Lanlan Liu, Zhicong Zhao i in. "Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy". Current Cancer Drug Targets 19, nr 6 (21.06.2019): 449–67. http://dx.doi.org/10.2174/1568009618666181010091246.
Pełny tekst źródłaLiu, Huiting, Xiaoqin Wang, Ran Yang, Wenbing Zeng, Dong Peng, Jason Li i Hu Wang. "Recent Development of Nuclear Molecular Imaging in Thyroid Cancer". BioMed Research International 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2149532.
Pełny tekst źródłaTanasova, Marina, Vagarshak V. Begoyan i Lukasz J. Weselinski. "Targeting Sugar Uptake and Metabolism for Cancer Identification and Therapy: An Overview". Current Topics in Medicinal Chemistry 18, nr 6 (28.06.2018): 467–83. http://dx.doi.org/10.2174/1568026618666180523110837.
Pełny tekst źródłaLalatonne, Y., M. Monteil, H. Jouni, J. M. Serfaty, O. Sainte-Catherine, N. Lièvre, S. Kusmia, P. Weinmann, M. Lecouvey i L. Motte. "Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic". Journal of Osteoporosis 2010 (2010): 1–7. http://dx.doi.org/10.4061/2010/747852.
Pełny tekst źródłaBOYES, STEPHEN G., MISTY D. ROWE, NATALIE J. SERKOVA, FERNANDO J. KIM, JAMES R. LAMBERT i PRIYA N. WERAHERA. "POLYMER-MODIFIED GADOLINIUM NANOPARTICLES FOR TARGETED MAGNETIC RESONANCE IMAGING AND THERAPY". Nano LIFE 01, nr 03n04 (wrzesień 2010): 263–75. http://dx.doi.org/10.1142/s1793984410000250.
Pełny tekst źródłaAllen, Kevin J. H., Mackenzie E. Malo, Rubin Jiao i Ekaterina Dadachova. "Targeting Melanin in Melanoma with Radionuclide Therapy". International Journal of Molecular Sciences 23, nr 17 (23.08.2022): 9520. http://dx.doi.org/10.3390/ijms23179520.
Pełny tekst źródłaSk, Ugir Hossain, i Chie Kojima. "Dendrimers for theranostic applications". Biomolecular Concepts 6, nr 3 (1.06.2015): 205–17. http://dx.doi.org/10.1515/bmc-2015-0012.
Pełny tekst źródłaHUANG, HUANG-CHIAO, JAMES RAMOS, TARAKA SAI PAVAN GRANDHI, THRIMOORTHY POTTA i KAUSHAL REGE. "GOLD NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS". Nano LIFE 01, nr 03n04 (wrzesień 2010): 289–307. http://dx.doi.org/10.1142/s1793984410000274.
Pełny tekst źródłaThariat, Juliette, Samuel Valable, Carine Laurent, Siamak Haghdoost, Elodie A. Pérès, Myriam Bernaudin, François Sichel i in. "Hadrontherapy Interactions in Molecular and Cellular Biology". International Journal of Molecular Sciences 21, nr 1 (24.12.2019): 133. http://dx.doi.org/10.3390/ijms21010133.
Pełny tekst źródłaSharma, Anirudh, Erik Cressman, Anilchandra Attaluri, Dara L. Kraitchman i Robert Ivkov. "Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer". Nanomaterials 12, nr 16 (12.08.2022): 2768. http://dx.doi.org/10.3390/nano12162768.
Pełny tekst źródłaAdams, Lisa, Julia Brangsch, Bernd Hamm, Marcus R. Makowski i Sarah Keller. "Targeting the Extracellular Matrix in Abdominal Aortic Aneurysms Using Molecular Imaging Insights". International Journal of Molecular Sciences 22, nr 5 (7.03.2021): 2685. http://dx.doi.org/10.3390/ijms22052685.
Pełny tekst źródłaDupont, Anne-Claire, Bérenger Largeau, Denis Guilloteau, Maria Joao Santiago Ribeiro i Nicolas Arlicot. "The Place of PET to Assess New Therapeutic Effectiveness in Neurodegenerative Diseases". Contrast Media & Molecular Imaging 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/7043578.
Pełny tekst źródłaVorobyeva, Anzhelika, Elena Konovalova, Tianqi Xu, Alexey Schulga, Mohamed Altai, Javad Garousi, Sara S. Rinne, Anna Orlova, Vladimir Tolmachev i Sergey Deyev. "Feasibility of Imaging EpCAM Expression in Ovarian Cancer Using Radiolabeled DARPin Ec1". International Journal of Molecular Sciences 21, nr 9 (7.05.2020): 3310. http://dx.doi.org/10.3390/ijms21093310.
Pełny tekst źródłaHernández-Pedro, Norma Y., Edgar Rangel-López, Roxana Magaña-Maldonado, Verónica Pérez de la Cruz, Abel Santamaría del Angel, Benjamín Pineda i Julio Sotelo. "Application of Nanoparticles on Diagnosis and Therapy in Gliomas". BioMed Research International 2013 (2013): 1–20. http://dx.doi.org/10.1155/2013/351031.
Pełny tekst źródłaLiu, Bin, Wen Cao, Jin Cheng, Sisi Fan, Shaojun Pan, Lirui Wang, Jiaqi Niu i in. "Human natural killer cells for targeting delivery of gold nanostars and bimodal imaging directed photothermal/photodynamic therapy and immunotherapy". Cancer Biology & Medicine 16, nr 4 (15.11.2019): 756–70. http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0112.
Pełny tekst źródłaSundaram, Prabhavathi, i Heidi Abrahamse. "Phototherapy Combined with Carbon Nanomaterials (1D and 2D) and Their Applications in Cancer Therapy". Materials 13, nr 21 (28.10.2020): 4830. http://dx.doi.org/10.3390/ma13214830.
Pełny tekst źródłaPaliwal, Shivani Rai, Rameshroo Kenwat, Sabyasachi Maiti i Rishi Paliwal. "Nanotheranostics for Cancer Therapy and Detection: State of the Art". Current Pharmaceutical Design 26, nr 42 (12.12.2020): 5503–17. http://dx.doi.org/10.2174/1381612826666201116120422.
Pełny tekst źródłaKoczorowski, Tomasz, Arleta Glowacka-Sobotta, Maciej Michalak, Dariusz T. Mlynarczyk, Emre Güzel, Tomasz Goslinski i Lukasz Sobotta. "Connections between Metallic Nanoparticles and Chlorin e6—An Overview of Physicochemical and Biological Properties and Prospective Medical Applications". Applied Sciences 13, nr 6 (20.03.2023): 3933. http://dx.doi.org/10.3390/app13063933.
Pełny tekst źródłaLiu, Yewei, Shuncong Wang, Xiaohui Zhao, Yuanbo Feng, Guy Bormans, Johan Swinnen, Raymond Oyen, Gang Huang, Yicheng Ni i Yue Li. "Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation". Diagnostics 10, nr 2 (31.01.2020): 78. http://dx.doi.org/10.3390/diagnostics10020078.
Pełny tekst źródłaOronova, Adelina, i Marina Tanasova. "Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe". International Journal of Molecular Sciences 24, nr 1 (22.12.2022): 173. http://dx.doi.org/10.3390/ijms24010173.
Pełny tekst źródłaNicosia, Aldo, Gennara Cavallaro, Salvatore Costa, Mara Utzeri, Angela Cuttitta, Gaetano Giammona i Nicolò Mauro. "Carbon Nanodots for On Demand Chemophotothermal Therapy Combination to Elicit Necroptosis: Overcoming Apoptosis Resistance in Breast Cancer Cell Lines". Cancers 12, nr 11 (25.10.2020): 3114. http://dx.doi.org/10.3390/cancers12113114.
Pełny tekst źródłaLu, Kai, Zheng Li, Qiang Hu, Jianfei Sun i Ming Chen. "CRPC Membrane-Camouflaged, Biomimetic Nanosystem for Overcoming Castration-Resistant Prostate Cancer by Cellular Vehicle-Aided Tumor Targeting". International Journal of Molecular Sciences 23, nr 7 (26.03.2022): 3623. http://dx.doi.org/10.3390/ijms23073623.
Pełny tekst źródłaHumby, Frances, Myles Lewis, Nandhini Ramamoorthi, Jason A. Hackney, Michael R. Barnes, Michele Bombardieri, A. Francesca Setiadi i in. "Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients". Annals of the Rheumatic Diseases 78, nr 6 (16.03.2019): 761–72. http://dx.doi.org/10.1136/annrheumdis-2018-214539.
Pełny tekst źródłaEtrych, Tomáš, Olga Janoušková i Petr Chytil. "Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment". Pharmaceutics 11, nr 9 (12.09.2019): 471. http://dx.doi.org/10.3390/pharmaceutics11090471.
Pełny tekst źródłaStan, Miruna-Silvia, Ionela Cristina Nica, Juliette Moreau, Maïté Callewaert, Cyril Cadiou, Françoise Chuburu, Hildegard Herman, Anca Hermenean, Anca Dinischiotu i Sorina N. Voicu. "Fluorescent Chitosan Nanogels Developed for Targeting Endothelial Cells of Axillary Lymph Nodes". Materials Proceedings 4, nr 1 (11.11.2020): 12. http://dx.doi.org/10.3390/iocn2020-07847.
Pełny tekst źródłaWang, Hsin-Ta, Po-Chien Chou, Ping-Han Wu, Chi-Ming Lee, Kang-Hsin Fan, Wei-Jen Chang, Sheng-Yang Lee i Haw-Ming Huang. "Physical and Biological Evaluation of Low-Molecular-Weight Hyaluronic Acid/Fe3O4 Nanoparticle for Targeting MCF7 Breast Cancer Cells". Polymers 12, nr 5 (11.05.2020): 1094. http://dx.doi.org/10.3390/polym12051094.
Pełny tekst źródłavon Spreckelsen, Niklas, Natalie Waldt, Rebecca Poetschke, Christoph Kesseler, Hildegard Dohmen, Hui-Ke Jiao, Attila Nemeth i in. "CBMT-25. THE KLF4K409Q MUTATION IN MENINGIOMA IMPAIRS HIF-1Α DEGRADATION AND CAN BE HARNESSED FOR TARGETED THERAPY". Neuro-Oncology 21, Supplement_6 (listopad 2019): vi38. http://dx.doi.org/10.1093/neuonc/noz175.147.
Pełny tekst źródłaCollado Camps, Estel, Sanne A. M. van Lith, Cathelijne Frielink, Jordi Lankhof, Ingrid Dijkgraaf, Martin Gotthardt i Roland Brock. "CPPs to the Test: Effects on Binding, Uptake and Biodistribution of a Tumor Targeting Nanobody". Pharmaceuticals 14, nr 7 (23.06.2021): 602. http://dx.doi.org/10.3390/ph14070602.
Pełny tekst źródłaGrob, Nathalie M., Roger Schibli, Martin Béhé i Thomas L. Mindt. "Improved Tumor-Targeting with Peptidomimetic Analogs of Minigastrin 177Lu-PP-F11N". Cancers 13, nr 11 (27.05.2021): 2629. http://dx.doi.org/10.3390/cancers13112629.
Pełny tekst źródłaPinto, Ricardo J. B., Nicole S. Lameirinhas, Gabriela Guedes, Gustavo H. Rodrigues da Silva, Párástu Oskoei, Stefan Spirk, Helena Oliveira, Iola F. Duarte, Carla Vilela i Carmen S. R. Freire. "Cellulose Nanocrystals/Chitosan-Based Nanosystems: Synthesis, Characterization, and Cellular Uptake on Breast Cancer Cells". Nanomaterials 11, nr 8 (12.08.2021): 2057. http://dx.doi.org/10.3390/nano11082057.
Pełny tekst źródłaHallett, Robin M., Sarah E. Poplawski, Mark H. Dornan, Shin Hye Ahn, Shuang Pan, Wu Wengen, Liu Yuxin i in. "Abstract 3303: Pre-clinical characterization of the novel FAP targeting ligand PNT6555 for imaging and therapy of cancer". Cancer Research 82, nr 12_Supplement (15.06.2022): 3303. http://dx.doi.org/10.1158/1538-7445.am2022-3303.
Pełny tekst źródłaKrutzek, Fabian, Cornelius K. Donat, Martin Ullrich, Kristof Zarschler, Marie-Charlotte Ludik, Anja Feldmann, Liliana R. Loureiro, Klaus Kopka i Sven Stadlbauer. "Design and Biological Evaluation of Small-Molecule PET-Tracers for Imaging of Programmed Death Ligand 1". Cancers 15, nr 9 (6.05.2023): 2638. http://dx.doi.org/10.3390/cancers15092638.
Pełny tekst źródłaLin, Yu-Wei, Hung-Cheng Su, Emmanuel Naveen Raj, Kuang-Kai Liu, Chien-Jen Chang, Tzu-Chia Hsu, Po-Yun Cheng i in. "Targeting EGFR and Monitoring Tumorigenesis of Human Lung Cancer Cells In Vitro and In Vivo Using Nanodiamond-Conjugated Specific EGFR Antibody". Pharmaceutics 15, nr 1 (28.12.2022): 111. http://dx.doi.org/10.3390/pharmaceutics15010111.
Pełny tekst źródłaPuranik, Ameya D., Clarisse Dromain, Neil Fleshner, Mike Sathekge, Marianne Pavel, Nina Eberhardt, Friedemann Zengerling, Ralf Marienfeld, Michael Grunert i Vikas Prasad. "Target Heterogeneity in Oncology: The Best Predictor for Differential Response to Radioligand Therapy in Neuroendocrine Tumors and Prostate Cancer". Cancers 13, nr 14 (19.07.2021): 3607. http://dx.doi.org/10.3390/cancers13143607.
Pełny tekst źródłaNguyen, Anh Thu, i Hee-Kwon Kim. "Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors". Pharmaceutics 15, nr 7 (27.06.2023): 1840. http://dx.doi.org/10.3390/pharmaceutics15071840.
Pełny tekst źródłaLundmark, Fanny, Gustav Olanders, Sara Sophie Rinne, Ayman Abouzayed, Anna Orlova i Ulrika Rosenström. "Design, Synthesis, and Evaluation of Linker-Optimised PSMA-Targeting Radioligands". Pharmaceutics 14, nr 5 (20.05.2022): 1098. http://dx.doi.org/10.3390/pharmaceutics14051098.
Pełny tekst źródłaLiang, Hongda, Zheng Peng, Xiao Peng, Yufeng Yuan, Teng Ma, Yiwan Song, Jun Song i Junle Qu. "Fluorescence life-time imaging microscopy (FLIM) monitors tumor cell death triggered by photothermal therapy with MoS2 nanosheets". Journal of Innovative Optical Health Sciences 12, nr 05 (wrzesień 2019): 1940002. http://dx.doi.org/10.1142/s1793545819400029.
Pełny tekst źródłaChen, Kai, Xue Li, Hongyan Zhu, Qiyong Gong i Kui Luo. "Endocytosis of Nanoscale Systems for Cancer Treatments". Current Medicinal Chemistry 25, nr 25 (30.08.2018): 3017–35. http://dx.doi.org/10.2174/0929867324666170428153056.
Pełny tekst źródłaChu, Charles C., Jonathan J. Pinney, Karl R. VanDerMeid, Raquel Izumi, Veerendra Munugalavadla, Paul M. Barr, Michael Rusty Elliott i Clive S. Zent. "Anti-CD20 Therapy Reliance on Antibody-Dependent Cellular Phagocytosis Affects Combination Drug Choice". Blood 134, Supplement_1 (13.11.2019): 682. http://dx.doi.org/10.1182/blood-2019-124901.
Pełny tekst źródłaIravani, Siavash, i Rajender S. Varma. "MXenes in Cancer Nanotheranostics". Nanomaterials 12, nr 19 (27.09.2022): 3360. http://dx.doi.org/10.3390/nano12193360.
Pełny tekst źródłaZhao, Linlin, Jongseon Choi, Yan Lu i So Yeon Kim. "NIR Photoregulated Theranostic System Based on Hexagonal-Phase Upconverting Nanoparticles for Tumor-Targeted Photodynamic Therapy and Fluorescence Imaging". Nanomaterials 10, nr 12 (25.11.2020): 2332. http://dx.doi.org/10.3390/nano10122332.
Pełny tekst źródłaNcapayi, Vuyelwa, Neethu Ninan, Thabang C. Lebepe, Sundararajan Parani, Aswathy Ravindran Girija, Richard Bright, Krasimir Vasilev i in. "Diagnosis of Prostate Cancer and Prostatitis Using near Infra-Red Fluorescent AgInSe/ZnS Quantum Dots". International Journal of Molecular Sciences 22, nr 22 (19.11.2021): 12514. http://dx.doi.org/10.3390/ijms222212514.
Pełny tekst źródłaShim, Hyunsuk, Alfredo Daniel Voloschin, Li Wei, Scott N. Hwang, Andrew H. Miller, Ying Guo, Daniel Brat i in. "Using proton MRSI to predict response to vorinostat treatment in recurrent GBM." Journal of Clinical Oncology 30, nr 15_suppl (20.05.2012): 3055. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.3055.
Pełny tekst źródłaHashempour Alamdari, Nasim, Mahmood Alaei-Beirami, Seyed Ataollah Sadat Shandiz, Hadi Hejazinia, Rahimeh Rasouli, Mostafa Saffari, Seyed Esmaeil Sadat Ebrahimi, Artin Assadi i Mehdi Shafiee Ardestani. "Gd3+-Asparagine-Anionic Linear Globular Dendrimer Second-Generation G2 Complexes: Novel Nanobiohybrid Theranostics". Contrast Media & Molecular Imaging 2017 (2017): 1–19. http://dx.doi.org/10.1155/2017/3625729.
Pełny tekst źródła