Gotowa bibliografia na temat „Cellular Targeting, Imaging and Therapy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cellular Targeting, Imaging and Therapy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cellular Targeting, Imaging and Therapy"
Guan, Jiankun, Yuxin Wu, Huimin Wang, Haowen Zeng, Zifu Li i Xiangliang Yang. "A DiR loaded tumor targeting theranostic cisplatin-icodextrin prodrug nanoparticle for imaging guided chemo-photothermal cancer therapy". Nanoscale 13, nr 46 (2021): 19399–411. http://dx.doi.org/10.1039/d1nr05824j.
Pełny tekst źródłaSerda, Rita E., Natalie L. Adolphi, Marco Bisoffi i Laurel O. Sillerud. "Targeting and Cellular Trafficking of Magnetic Nanoparticles for Prostate Cancer Imaging". Molecular Imaging 6, nr 4 (1.07.2007): 7290.2007.00025. http://dx.doi.org/10.2310/7290.2007.00025.
Pełny tekst źródłaJiang, Shan, Muthu Kumara Gnanasammandhan i Yong Zhang. "Optical imaging-guided cancer therapy with fluorescent nanoparticles". Journal of The Royal Society Interface 7, nr 42 (16.09.2009): 3–18. http://dx.doi.org/10.1098/rsif.2009.0243.
Pełny tekst źródłaSantoso, Michelle R., i Phillip C. Yang. "Magnetic Nanoparticles for Targeting and Imaging of Stem Cells in Myocardial Infarction". Stem Cells International 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/4198790.
Pełny tekst źródłaChen, Bin, Brian W. Pogue, P. Jack Hoopes i Tayyaba Hasan. "Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy". International Journal of Radiation Oncology*Biology*Physics 61, nr 4 (marzec 2005): 1216–26. http://dx.doi.org/10.1016/j.ijrobp.2004.08.006.
Pełny tekst źródłaJin, Zhao-Hui, Atsushi B. Tsuji, Mélissa Degardin, Pascal Dumy, Didier Boturyn i Tatsuya Higashi. "Multiplexed Imaging Reveals the Spatial Relationship of the Extracellular Acidity-Targeting pHLIP with Necrosis, Hypoxia, and the Integrin-Targeting cRGD Peptide". Cells 11, nr 21 (4.11.2022): 3499. http://dx.doi.org/10.3390/cells11213499.
Pełny tekst źródłaLiang, Zhiquan, Ziwen Lu, Yafei Zhang, Dongsheng Shang, Ruyan Li, Lanlan Liu, Zhicong Zhao i in. "Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy". Current Cancer Drug Targets 19, nr 6 (21.06.2019): 449–67. http://dx.doi.org/10.2174/1568009618666181010091246.
Pełny tekst źródłaLiu, Huiting, Xiaoqin Wang, Ran Yang, Wenbing Zeng, Dong Peng, Jason Li i Hu Wang. "Recent Development of Nuclear Molecular Imaging in Thyroid Cancer". BioMed Research International 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2149532.
Pełny tekst źródłaTanasova, Marina, Vagarshak V. Begoyan i Lukasz J. Weselinski. "Targeting Sugar Uptake and Metabolism for Cancer Identification and Therapy: An Overview". Current Topics in Medicinal Chemistry 18, nr 6 (28.06.2018): 467–83. http://dx.doi.org/10.2174/1568026618666180523110837.
Pełny tekst źródłaLalatonne, Y., M. Monteil, H. Jouni, J. M. Serfaty, O. Sainte-Catherine, N. Lièvre, S. Kusmia, P. Weinmann, M. Lecouvey i L. Motte. "Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic". Journal of Osteoporosis 2010 (2010): 1–7. http://dx.doi.org/10.4061/2010/747852.
Pełny tekst źródłaRozprawy doktorskie na temat "Cellular Targeting, Imaging and Therapy"
Nordberg, Erika. "EGFR and HER2 Targeting for Radionuclide-Based Imaging and Therapy : Preclinical Studies". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8721.
Pełny tekst źródłaSteyer, Grant J. "IMAGING OF CARDIOVASCULAR CELLULAR THERAPEUTICS WITH A CRYO-IMAGING SYSTEM". Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1271182554.
Pełny tekst źródłaNaik, Jay Dolatrai. "Cellular carriers of viral vectors for turmour selective targeting of cancer gene therapy". Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505080.
Pełny tekst źródłaRodrigues, Margret S. Tong Alex W. "Growth inhibition of human multiple myeloma cells by a conditional-replicative, oncolytic adenovirus armed with the CD154 (CD40-ligand) transgene". Waco, Tex. : Baylor University, 2006. http://hdl.handle.net/2104/5016.
Pełny tekst źródłaLiu, Jian. "POLYMER MODIFICATION OF FULLERENE FOR PHOTODYNAMIC TUMOR THERAPY AND TUMOR IMAGING". 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120886.
Pełny tekst źródłaCalì, Bianca. "Cellular communication and cancer therapy: targeting Ca2+and NO signalling within the tumour microenvironment". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423745.
Pełny tekst źródłaLa morte cellulare e l’effetto bystander rappresentano degli elementi decisivi per l’efficacia della terapia antitumorale nonchè per la modulazione della risposta immunitaria contro il cancro. Per “effetto bystander” si intende il processo per il quale le cellule non soggette a determinati trattamenti farmacologici subiscono indirettamente gli effetti terapeutici, siano essi positivi o negativi, risultanti dal trattamento esclusivo delle cellule vicine. Nonostante siano state proposte diverse molecole e vie di segnalazione coinvolte nell’effetto bystander, i messaggeri molecolari essenziali ed i meccanismi che sottendono alla propagazione dei segnali di morte non sono ancora noti. Diversi studi suggeriscono un coinvolgimento dell’ossido nitrico (NO) e delle specie reattive dell’azoto (RNS) nell’effetto bystander tuttavia, il loro ruolo nel processo non è tuttora totalmente chiaro, considerato che essi possono sia inibire che sostenere la progressione del tumore. Inoltre, i metodi tradizionalmente usati per lo studio dell’ossido nitrico non riflettono necessariamente la produzione di NO in tempo reale nè consentono studi su complesse masse tumorali tridimensionali. L’obiettivo principale di questo studio è stato quello di individuare e caratterizzare i segnali cellulari responsabili dell’effetto bystander all’interno del microambiente tumorale, rivolgendo particolare attenzione all’NO. A questo scopo, abbiamo utilizzato delle tecniche di microscopia intravitale, avvalendoci di una nuova sonda fluorescente per l’NO (CuFL) e del modello sperimentale delle camerette dorsali impiantate su topi affetti da tumore e sottoposti a terapia fotodinamica (PDT). Da questo studio è emerso che l’effetto bystander indotto dalla terapia fotodinamica è associato alla generazione all’interno della massa neoplastica di onde molto rapide di segnali di NO e di Ca2+. Questi eventi avallano l’ipotesi che l’attività delle isoforme costitutive dell’enzima NOS possa esercitare un ruolo cruciale nella diffusione delle risposte bystander e nella trasmissione dei segnali di morte. Questo lavoro inoltre ci ha consentito di dimostrare che la terapia fotodinamica è in grado di indurre l’apoptosi delle cellule vicine non trattate (bystander) attraverso i meccanismi di comunicazione intercellulare mediati dalle giunzioni comunicanti. Infine, i risultati ottenuti hanno fornito la prima evidenza diretta della partecipazione dell’NO all’effetto bystander all’interno di una massa tumorale tridimensionale e corroborano efficacemente l’ipotesi che le giunzioni comunicanti formate da connesine siano essenziali per garantire la propagazione dei segnali di morte osservati nell’effetto bystander.
Jing, Ying. "Magnetic nanoparticle tagging and application of magnetophoresis to cellular therapy and imaging". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1153422245.
Pełny tekst źródłaMickler, Frauke Martina. "Live-cell imaging elucidates cellular interactions of gene nanocarriers for cancer therapy". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-165829.
Pełny tekst źródłaUttamapinant, Chayasith. "Cellular delivery and site-specific targeting of organic fluorophores for super-resolution imaging in living cells". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79263.
Pełny tekst źródłaVita. Cataloged from PDF version of thesis.
Includes bibliographical references.
Recent advances in super-resolution fluorescence microscopy have pushed the spatial resolution of biological imaging down to a few nanometers. The key element to the development of such imaging modality is synthetic organic fluorophores with suitable brightness and photostability. However, organic fluorophores are very difficult to use in live cells because of their chemical compositions. Many excellent fluorophores, such as cyanine and Alexa Fluor dyes, are highly charged with sulfonate groups and do not cross the plasma membrane. Even if the fluorophores get inside cells, there exist few methods that can be used to target these nongenetically encoded probes to specific cellular proteins with high specificity and minimal interference. We describe herein the development of new methods for cellular delivery and sitespecific targeting of organic fluorophores to proteins in living cells. Building on our lab's previous work on engineering new substrate specificity for E. coli lipoic acid ligase (LplA), we created a mutant ligase that catalyzes covalent conjugation of a 7-hydroxycoumarin fluorophore onto a 13-amino acid peptide substrate, called LAP. We showed that enzymatic fluorophore ligation is compatible with the living cell interior and is highly specific for LAP fusion proteins. To extend the repertoire of fluorophores targetable by LplA inside cells, we devised a two-step labeling approach based on enzymatic azide ligation, followed by chemoselective derivatization with any membrane-permeable fluorophore via strain-promoted cycloaddition. As an auxiliary tool for enzymatic probe ligation, we also developed a very efficient and biocompatible variant of copper-catalyzed azide-alkyne cycloaddition that can be used for modification of cell-surface proteins. To overcome the lack of membrane permeability of sulfonated fluorophores, we identified a chemical reaction that efficiently masks charged sulfonate groups as esterase-labile sulfonate esters. Such masked sulfonated fluorophores enter cells readily and can be sitespecifically targeted to intracellular proteins. Our efforts in developing protein labeling and fluorophore delivery methods culminated in their application to super-resolution imaging of cellular proteins in living cells.
by Chayasith Uttamapinant.
Ph.D.
Persson, Mikael. "Antibody Mediated Radionuclide Targeting of HER-2 for Cancer Diagnostics and Therapy : Preclinical Studies". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6798.
Pełny tekst źródłaKsiążki na temat "Cellular Targeting, Imaging and Therapy"
D, Kumar Rakesh Ph, red. Molecular targeting and signal transduction. Boston: Kluwer Academic Publishers, 2004.
Znajdź pełny tekst źródłaKahn, Michael. Targeting the Wnt pathway in cancer. New York: Springer, 2011.
Znajdź pełny tekst źródłaD, Kumar Rakesh Ph, red. Molecular targeting and signal transduction. Boston: Kluwer Academic Publishers, 2004.
Znajdź pełny tekst źródłaRakesh, Kumar. Nuclear signaling pathways and targeting transcription in cancer. New York: Humana Press, 2014.
Znajdź pełny tekst źródła1953-, Marasco Wayne A., red. Intrabodies: Basic research and clinical gene therapy applications. Berlin: Landes Bioscience, 1998.
Znajdź pełny tekst źródłaTargeted cancer therapy: A handbook for nurses. Sudbury, MA: Jones and Bartlett, 2010.
Znajdź pełny tekst źródłaStem cell labeling for delivery and tracking using noninvasive imaging. Boca Raton: Taylor & Francis, 2012.
Znajdź pełny tekst źródłaKumar, Rakesh. Molecular Targeting and Signal Transduction (Cancer Treatment and Research). Springer, 2004.
Znajdź pełny tekst źródłaKraitchman, Dara L., i Joseph Wu. Stem Cell Labeling for Delivery and Tracking Using Noninvasive Imaging. Taylor & Francis Group, 2011.
Znajdź pełny tekst źródłaStem Cell Labeling for Delivery and Tracking Using Noninvasive Imaging. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Cellular Targeting, Imaging and Therapy"
Demchenko, Alexander P. "Phototheranostics: Combining Targeting, Imaging, Therapy". W Introduction to Fluorescence Sensing, 649–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19089-6_17.
Pełny tekst źródłaRyan, Allen F., Lina M. Mullen i Joni K. Doherty. "Cellular Targeting for Cochlear Gene Therapy". W Gene Therapy of Cochlear Deafness, 99–115. Basel: KARGER, 2009. http://dx.doi.org/10.1159/000218210.
Pełny tekst źródłaDürr, Ralf, Oliver Keppler, Frauke Christ, Emmanuele Crespan, Anna Garbelli, Giovanni Maga i Ursula Dietrich. "Targeting Cellular Cofactors in HIV Therapy". W Topics in Medicinal Chemistry, 183–222. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/7355_2014_45.
Pełny tekst źródłaYanase, Kae, i Toshiwo Andoh. "Cellular resistance to DNA Topoisomerase I-targeting drugs". W DNA Topoisomerases in Cancer Therapy, 129–43. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0141-1_7.
Pełny tekst źródłaIqbal, Zafar, Longguang Jiang, Zhuo Chen, Cai Yuan, Rui Li, Ke Zheng, Xiaolei Zhou, Jincan Chen, Ping Hu i Mingdong Huang. "13 Tumor-specific imaging and photodynamic therapy targeting the urokinase receptor". W Imaging in Photodynamic Therapy, 259–74. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315278179-14.
Pełny tekst źródłaVillers, Arnauld, i Adil Ouzzane. "Multimodality MRI-Guided Targeting". W Imaging and Focal Therapy of Early Prostate Cancer, 133–40. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-182-0_10.
Pełny tekst źródłaGooden, C. S. R., i A. A. Epenetos. "Design, Synthesis, and Cellular Delivery of Antibody Targeted, Radiolabelled Oligonucleotide Conjugates for Cancer Therapy". W Targeting of Drugs 5, 107–14. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-6405-8_11.
Pełny tekst źródłaAhmed, Khalil, Gretchen Unger, Betsy T. Kren i Janeen H. Trembley. "Targeting CK2 for Cancer Therapy Using a Nanomedicine Approach". W Protein Kinase CK2 Cellular Function in Normal and Disease States, 299–315. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14544-0_17.
Pełny tekst źródłaHao, Fang, Neelu Yadav i Dhyan Chandra. "Targeting Cellular Signaling for Cancer Prevention and Therapy by Phytochemicals". W Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy, 219–43. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9326-6_11.
Pełny tekst źródłaLudwig, Wesley W., Mohamad E. Allaf i Dan Stoianovici. "Robotic Magnetic Resonance Imaging Targeting for Biopsy and Therapy". W Imaging and Focal Therapy of Early Prostate Cancer, 265–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49911-6_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Cellular Targeting, Imaging and Therapy"
Squires, Alexander, John Oshinski i Zion Tsz Ho Tse. "Instrument Guidance System for MRI-Guided Percutaneous Spinal Interventions". W 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3400.
Pełny tekst źródłaLiu, Tzu-Ming. "Near Infrared Active Nanomaterials for the Theragnosis of Tumors In Vivo". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5p_a409_6.
Pełny tekst źródłaThomas, Antony, Paige Baldwin i Yaling Liu. "Ultrasound Mediated Enhancement of Nanoparticle Uptake in PC-3 Cancer Cells". W ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93115.
Pełny tekst źródłaBuyukhatipoglu, Kivilcim, Tiffany A. Miller i Alisa Morss Clyne. "Biocompatible, Superparamagnetic, Flame Synthesized Iron Oxide Nanoparticles: Cellular Uptake and Toxicity Studies". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68049.
Pełny tekst źródłaSkala, Melissa C., Alex J. Walsh, Amy T. Shah, Joseph T. Sharick, Tiffany M. Heaster, Rebecca S. Cook, Carlos L. Arteaga, Melinda E. Sanders i Ingrid Meszoely. "Imaging Cellular Metabolic Heterogeneity in Cancer". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jw4a.1.
Pełny tekst źródłaZhou, Quan, Zhao Li, Juan Zhou, Bishnu P. Joshi, Gaoming Li, Xiyu Duan, Rork Kuick, Scott R. Owens i Thomas D. Wang. "EGFR Targeting Photoacoustic Probe for Hepatocellular Carcinoma Imaging in Vivo". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth2a.6.
Pełny tekst źródłaBreger, Joyce, James B. Delehanty, Kelly Boeneman Gemmill, Lauren D. Field, Juan B. Blanco-Canosa, Philip E. Dawson, Alan L. Huston i Igor L. Medintz. "Membrane-targeting peptides for nanoparticle-facilitated cellular imaging and analysis". W SPIE BiOS, redaktorzy Wolfgang J. Parak, Marek Osinski i Xing-Jie Liang. SPIE, 2015. http://dx.doi.org/10.1117/12.2077026.
Pełny tekst źródłaMallidi, Srivalleesha, Marvin Xavierselvan, Zhiming Mai i Tayyaba Hasan. "Can photoacoustic imaging to predict cellular photodynamic therapy efficacy?" W Photons Plus Ultrasound: Imaging and Sensing 2021, redaktorzy Alexander A. Oraevsky i Lihong V. Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2579029.
Pełny tekst źródłaMallidi, S., B. Wang, M. Mehrmohammadi, M. Qu, Y. S. Chen, P. Joshi, S. Kim i in. "Ultrasound-based imaging of nanoparticles: From molecular and cellular imaging to therapy guidance". W 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5441484.
Pełny tekst źródłaLyer, Stefan, Frank Wiekhorst, Rainer Tietze, Jan Zaloga, Christina Janko, Ralf Friedrich, Iwona Cicha i in. "Imaging and quantification of SPIONs for cancer therapy with magnetic drug targeting". W 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI). IEEE, 2015. http://dx.doi.org/10.1109/iwmpi.2015.7106996.
Pełny tekst źródła