Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Cellular signal transduction.

Artykuły w czasopismach na temat „Cellular signal transduction”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cellular signal transduction”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bae, Yun Soo, i June Seung Lee. "Cellular Signal Transduction". Journal of the Korean Medical Association 44, nr 7 (2001): 716. http://dx.doi.org/10.5124/jkma.2001.44.7.716.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Macara, I. G. "Oncogenes and cellular signal transduction". Physiological Reviews 69, nr 3 (1.07.1989): 797–820. http://dx.doi.org/10.1152/physrev.1989.69.3.797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ball, A. "Introduction to Cellular Signal Transduction". Cell Biology International 24, nr 11 (listopad 2000): 855. http://dx.doi.org/10.1006/cbir.2000.0590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Marks, F., i P. Angel. "Signal Transduction into the Nucleus: Fifth Colloquium on Cellular Signal Transduction". Journal of Cancer Research and Clinical Oncology 122, nr 10 (październik 1996): 638–42. http://dx.doi.org/10.1007/bf01221198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Marks, F., i G. F�rstenberger. "Fourth colloquium on cellular signal transduction. Lipid mediators: signal transduction and transport". Journal of Cancer Research and Clinical Oncology 121, nr 7 (lipiec 1995): 434–38. http://dx.doi.org/10.1007/bf01212952.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wurthner, Jens U., Amal K. Mukhopadhyay i Claus-Jürgen Peimann. "A cellular automaton model of cellular signal transduction". Computers in Biology and Medicine 30, nr 1 (styczeń 2000): 1–21. http://dx.doi.org/10.1016/s0010-4825(99)00020-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wetzel, C. H. "Cellular Mechanisms of Olfactory Signal Transduction". Chemical Senses 30, Supplement 1 (1.01.2005): i321—i322. http://dx.doi.org/10.1093/chemse/bjh244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schmidt-Ullrich, Rupert K., Paul Dent, Steven Grant, Ross B. Mikkelsen i Kristoffer Valerie. "Signal Transduction and Cellular Radiation Responses". Radiation Research 153, nr 3 (marzec 2000): 245–57. http://dx.doi.org/10.1667/0033-7587(2000)153[0245:stacrr]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lin, James C. A., Jimmy K. Li i Walter H. Chang. "Signal Transduction Pathway of Ultrasound Stimulation on Osteoblasts(Cellular & Tissue Engineering)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 87–88. http://dx.doi.org/10.1299/jsmeapbio.2004.1.87.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mattson, Mark P. "Cerebral Signal Transduction". Journal of Molecular Neuroscience 14, nr 3 (2000): 206–8. http://dx.doi.org/10.1385/jmn:14:3:206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Watt, F. M., i R. Sever. "Signal transduction". Journal of Cell Science 114, nr 7 (1.04.2001): 1247–48. http://dx.doi.org/10.1242/jcs.114.7.1247.

Pełny tekst źródła
Streszczenie:
We are pleased to announce the appointment of John Heath as an Editor of Journal of Cell Science. John has a background in developmental biology and has for many years been a leading figure in the field of growth factor and cytokine signalling. Our desire to appoint a new Editor is in part due to the continuing increase in the number of submissions? a consequence of our rising impact factor and author-friendly policies? and in part to our need for another expert in the field of signal transduction among the Editors. On behalf of all the Editors, we would like to welcome John to JCS; we look forward to working with him. The appointment of John Heath coincides with the start of a series of Commentaries focusing on Signal Transduction and Cellular Organization, which will be a feature of JCS throughout 2001. This series is intended to reflect our increasing understanding of the organization of signalling networks, which are no longer viewed merely as linear pathways but instead as complex webs in which scaffold-organized multiprotein complexes and subcellular localization of signalling molecules play key roles. Morgan Sheng's summary of the scaffold functions of PSD-95 in the post-synaptic density (see Cell Science at a Glance) underlines this complexity: PSD-95 is part of an extensive network of proteins that links together different classes of glutamate receptor and couples them to intracellular signalling pathways. In the first Commentary of this series (p. 1253), Bruce Mayer examines the roles of SH3 domains in signalling and discusses the overall logic governing signalling networks. On p. 1265, Graeme Milligan develops the theme by reviewing the evidence for regulation of G-protein-coupled receptor signalling through receptor oligomerization. Future articles in the series examine the importance of subcellular localization of signalling molecules such as Ca(2+), inositol phosphates and Ras, scaffold proteins such as STE5, KSR and AKAPs, and proteins such as p300/CBP and WASP that play central roles integrating signalling to produce biological output (see over). Finally, we would like to emphasize our interest in primary articles relating to this topic and take this opportunity to encourage all those working in the field of signal transduction to submit their best articles to the journal.?
Style APA, Harvard, Vancouver, ISO itp.
12

ISHIHAMA, Yasushi. "Molecular Dynamics in Cellular Signal Transduction Systems". Journal of the Society of Mechanical Engineers 111, nr 1076 (2008): 578–81. http://dx.doi.org/10.1299/jsmemag.111.1076_578.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Obeid, Lina M., i Mark E. Venable. "GERIATRIC BIOSCIENCE: Signal Transduction in Cellular Senescence". Journal of the American Geriatrics Society 45, nr 3 (marzec 1997): 361–66. http://dx.doi.org/10.1111/j.1532-5415.1997.tb00954.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Schwertz, Dorie W., i Catherine P. Barry. "Cellular communication through signal transduction: The background". Journal of Cardiovascular Nursing 8, nr 3 (kwiecień 1994): 1–27. http://dx.doi.org/10.1097/00005082-199404000-00003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Nakayama, K. "Cellular Signal Transduction of the Hypoxia Response". Journal of Biochemistry 146, nr 6 (28.10.2009): 757–65. http://dx.doi.org/10.1093/jb/mvp167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Hancock, John F., i Randall T. Moon. "Cell regulation: Cellular aspects of signal transduction". Current Opinion in Cell Biology 12, nr 2 (kwiecień 2000): 153–56. http://dx.doi.org/10.1016/s0955-0674(99)00070-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Landry, Benjamin D., David C. Clarke i Michael J. Lee. "Studying Cellular Signal Transduction with OMIC Technologies". Journal of Molecular Biology 427, nr 21 (październik 2015): 3416–40. http://dx.doi.org/10.1016/j.jmb.2015.07.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Berridge, Michael J. "Calcium signal transduction and cellular control mechanisms". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1742, nr 1-3 (grudzień 2004): 3–7. http://dx.doi.org/10.1016/j.bbamcr.2004.08.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Bachrach, Uriel, Yong-Chun Wang i Amalia Tabib. "Polyamines: New Cues in Cellular Signal Transduction". Physiology 16, nr 3 (czerwiec 2001): 106–9. http://dx.doi.org/10.1152/physiologyonline.2001.16.3.106.

Pełny tekst źródła
Streszczenie:
The naturally occurring polyamines putrescine, spermidine, and spermine are involved in signal transduction. This has been demonstrated by using inhibitors for polyamine biosynthesis (such as α-difluoromethylornithine) or adding polyamines to cultured cells. Different polyamines, preferentially activated protein kinases (tyrosine kinases and MAP kinases), stimulated the expression of nuclear protooncogenes (myc, jun, and fos).
Style APA, Harvard, Vancouver, ISO itp.
20

Gabbita, S. Prasad, Kent A. Robinson, Charles A. Stewart, Robert A. Floyd i Kenneth Hensley. "Redox Regulatory Mechanisms of Cellular Signal Transduction". Archives of Biochemistry and Biophysics 376, nr 1 (kwiecień 2000): 1–13. http://dx.doi.org/10.1006/abbi.1999.1685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Saltiel, Alan R., i Stuart J. Decker. "Cellular mechanisms of signal transduction for neurotrophins". BioEssays 16, nr 6 (czerwiec 1994): 405–11. http://dx.doi.org/10.1002/bies.950160608.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Shen, John T., i Vincent Falanga. "Growth Factors, Signal Transduction, and Cellular Responses". Journal of Dermatology 30, nr 1 (styczeń 2003): 5–16. http://dx.doi.org/10.1111/j.1346-8138.2003.tb00327.x.

Pełny tekst źródła
Streszczenie:
AbstractThe extraordinary advances in the field of growth factors and signal transduction have created new and promising therapeutic interventions. We intend to explain the difficult nomenclatures associated with growth factors and their mechanisms of action.
Style APA, Harvard, Vancouver, ISO itp.
23

Zhang, Yiming. "Exploring the mechanisms of cellular signal transduction pathways and their implications for diseases". Theoretical and Natural Science 22, nr 1 (20.12.2023): 254–58. http://dx.doi.org/10.54254/2753-8818/22/20230998.

Pełny tekst źródła
Streszczenie:
Communication between cells and their environment is facilitated by cellular signal transduction pathways, allowing cells to respond to various external stimuli. Through a literature review, this paper investigates the fundamental mechanisms underlying cellular signal transduction pathways, including intracellular signaling cascades and the functions of various signaling molecules. In addition, the paper examines the various categories of signaling pathways, including G protein-coupled receptors, receptor tyrosine kinases, and nuclear receptors. Understanding the mechanisms of cellular signal transduction pathways can have substantial implications for the development of new treatments for a variety of diseases. Numerous important signaling cascades and numerous signaling molecules are discussed in this study as they pertain to cellular signal transduction pathways in the communication between cells and their environment.
Style APA, Harvard, Vancouver, ISO itp.
24

Periyasamy, C. Periyasamy. "Analysis of Regulated Kinase Signal Network through Feedback Loops in Extra-Cellular Signal". Indonesian Journal of Electrical Engineering and Computer Science 8, nr 2 (1.11.2017): 549. http://dx.doi.org/10.11591/ijeecs.v8.i2.pp549-551.

Pełny tekst źródła
Streszczenie:
<p>Signal network assumes a vital part in directing the principal cell capacities, for example, cell expansion, survival, separation and motility. Improvement and investigation of scientific model can help us gain a profound comprehension of the unpredictable conduct of ERK flag transduction organizes. This paper exhibits a computational model that offers an incorporated quantitative and dynamic reproduction of ERK flag transduction arranges, actuated by epidermal development figure. The mathematic demonstrate contains the enactment energy of the pathway, a huge number of input circles and association of platform proteins. The model gives knowledge into flag reaction connections between the authoritative of EGF to its receptor at the phone surface and actuation of downstream proteins in the flagging course. The diverse impact of positive and negative input circles of the ERK flag transduction pathway were for the most part examined, showing that criticism circles were the primary affecting variable to the swaying of ERK flag transduction pathway. The forecasts of this wavering of ERK enactment concur well with the writing. It can prompt flag floods of the downstream substrates and instigate relating natural practices.</p>
Style APA, Harvard, Vancouver, ISO itp.
25

Berg, D. K., W. G. Conroy, Z. Liu i W. M. Zago. "Nicotinic Signal Transduction Machinery". Journal of Molecular Neuroscience 30, nr 1-2 (2006): 149–52. http://dx.doi.org/10.1385/jmn:30:1:149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Bosnjak, Zeljko J., i David C. Warltier. "Cellular Signal Transduction Pathways for Anesthetic-induced Cardioprotection". US Cardiology Review 3, nr 1 (1.05.2006): 93–94. http://dx.doi.org/10.15420/usc.2006.3.1.93.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Yakovlev, Vasily A., i Ross B. Mikkelsen. "Protein tyrosine nitration in cellular signal transduction pathways". Journal of Receptors and Signal Transduction 30, nr 6 (16.09.2010): 420–29. http://dx.doi.org/10.3109/10799893.2010.513991.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Schumann, Julia. "Molecular Mechanism of Cellular Membranes for Signal Transduction". Membranes 12, nr 8 (30.07.2022): 748. http://dx.doi.org/10.3390/membranes12080748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

TIMMER, J., T. G. MÜLLER, I. SWAMEYE, O. SANDRA i U. KLINGMÜLLER. "MODELING THE NONLINEAR DYNAMICS OF CELLULAR SIGNAL TRANSDUCTION". International Journal of Bifurcation and Chaos 14, nr 06 (czerwiec 2004): 2069–79. http://dx.doi.org/10.1142/s0218127404010461.

Pełny tekst źródła
Streszczenie:
During the past decades the components involved in cellular signal transduction from membrane receptors to gene activation in the nucleus have been studied in detail. Based on the qualitative biochemical knowledge, signalling pathways are drawn as static graphical schemes. However, the dynamics and control of information processing through signalling cascades is not understood. Here we show that based on time resolved measurements it is possible to quantitatively model the nonlinear dynamics of signal transduction. To select an appropriate model we performed parameter estimation by maximum likelihood and statistical testing. We apply this approach to the JAK-STAT signalling pathway that was believed to represent a feed-forward cascade. We show by comparison of different models that this hypothesis is insufficient to explain the experimental data and suggest a new model including a delayed feedback.
Style APA, Harvard, Vancouver, ISO itp.
30

Lobie, PE, TJJ Wood, D. Sliva, N. Billestrup, MJ Waters, B. Enberg i G. Norstedt. "The cellular mechanism of growth hormone signal transduction". Acta Paediatrica 83, s406 (grudzień 1994): 39–46. http://dx.doi.org/10.1111/j.1651-2227.1994.tb13420.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kuno, Takayoshi. "Molecular pharmacology of phosphorylation-mediated cellular signal transduction". Japanese Journal of Pharmacology 52 (1990): 69. http://dx.doi.org/10.1016/s0021-5198(19)55041-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Howlett, Allyn C., i Somnath Mukhopadhyay. "Cellular signal transduction by anandamide and 2-arachidonoylglycerol". Chemistry and Physics of Lipids 108, nr 1-2 (listopad 2000): 53–70. http://dx.doi.org/10.1016/s0009-3084(00)00187-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ehlers, Richard A., Ricardo M. Bonnor, Xiaofu Wang, Mark R. Hellmich i B. Mark Evers. "Signal transduction mechanisms in neurotensin-mediated cellular regulation". Surgery 124, nr 2 (sierpień 1998): 239–47. http://dx.doi.org/10.1016/s0039-6060(98)70126-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Jung, Mira, i Anatoly Dritschilo. "Signal transduction and cellular responses to ionizing radiation". Seminars in Radiation Oncology 6, nr 4 (październik 1996): 268–72. http://dx.doi.org/10.1016/s1053-4296(96)80022-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Ganser, Alexander, Günter Roth, Karsten Köhler, Thomas André, Andreas Heeren, Wolfgang Henschel, Dieter Kern, Karl-Heinz Wiesmüller i Roland Brock. "Microsystems for the analysis of cellular signal transduction". NanoBiotechnology 1, nr 3 (wrzesień 2005): 277–78. http://dx.doi.org/10.1007/s12030-005-0039-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Lockwood, Arthur H., Suzanne K. Murphy, Steven Borislow, Adam Lazarus i Maryanne Pendergast. "Cellular signal transduction and the reversal of malignancy". Journal of Cellular Biochemistry 33, nr 4 (kwiecień 1987): 237–55. http://dx.doi.org/10.1002/jcb.240330403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Chou, Thomas T., John Q. Trojanowski i Virginia M. Y. Lee. "Neurotrophin signal transduction in medulloblastoma". Journal of Neuroscience Research 49, nr 5 (1.09.1997): 522–27. http://dx.doi.org/10.1002/(sici)1097-4547(19970901)49:5<522::aid-jnr2>3.0.co;2-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Lee, Bok-Soo, Sun-Hwa Lee, Pinghui Feng, Heesoon Chang, Nam-Hyuk Cho i Jae U. Jung. "Characterization of the Kaposi's Sarcoma-Associated Herpesvirus K1 Signalosome". Journal of Virology 79, nr 19 (1.10.2005): 12173–84. http://dx.doi.org/10.1128/jvi.79.19.12173-12184.2005.

Pełny tekst źródła
Streszczenie:
ABSTRACT Kaposi's sarcoma (KS) is a multifocal angiogenic tumor and appears to be a hyperplastic disorder caused, in part, by local production of inflammatory cytokines. The K1 lymphocyte receptor-like protein of KS-associated herpesvirus (KSHV) efficiently transduces extracellular signals to elicit cellular activation events through its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). To further delineate K1-mediated signal transduction, we purified K1 signaling complexes and identified its cellular components. Upon stimulation, the K1 ITAM was efficiently tyrosine phosphorylated and subsequently interacted with cellular Src homology 2 (SH2)-containing signaling proteins Lyn, Syk, p85, PLCγ2, RasGAP, Vav, SH2 domain-containing protein tyrosine phosphatase 1/2, and Grab2 through its phosphorylated tyrosine residues. Mutational analysis demonstrated that each tyrosine residue of K1 ITAM contributed to the interactions with cellular signaling proteins in distinctive ways. Consequently, these interactions led to the marked augmentation of cellular signal transduction activity, evidenced by the increase of cellular tyrosine phosphorylation and intracellular calcium mobilization, the activation of NF-AT and AP-1 transcription factor activities, and the production of inflammatory cytokines. These results demonstrate that KSHV K1 effectively recruits a set of cellular SH2-containing signaling molecules to form the K1 signalosome, which elicits downstream signal transduction and induces inflammatory cytokine production.
Style APA, Harvard, Vancouver, ISO itp.
39

Mooibroek, Marilyn J., i Jerry H. Wang. "Integration of signal-transduction processes". Biochemistry and Cell Biology 66, nr 6 (1.06.1988): 557–66. http://dx.doi.org/10.1139/o88-066.

Pełny tekst źródła
Streszczenie:
The adenylate cyclase – cAMP, phospholipase C – IP3 (inositol 1,4,5-triphosphate), and DAG (diacylglycerol) signal transduction systems are used to illustrate general principles underlying the process of information transfer during cell stimulation. Both systems consist of reaction cascades that convert the external signal to an intracellular messenger, translate the messenger to regulatory activities, and then modulate the activities of appropriate cellular proteins to result in specific cell responses. Almost all of these reactions are under second-messenger-dependent regulation, with many being regulated by multiple messengers. Such complex regulation provides ample opportunities for the fine-tuning of the signal cascades and for coordination between cascades during cell stimulation. Specific examples are used to illustrate how the cell uses different intrasystem and intersystem regulatory reactions to achieve specific responses.
Style APA, Harvard, Vancouver, ISO itp.
40

Taglialatela, G., M. S. Thomas, W. R. Zhang, N. J. Macdonald i A. C. Andorn. "Poster Sessions CP08: Signal Transduction". Journal of Neurochemistry 81 (28.06.2008): 97. http://dx.doi.org/10.1046/j.1471-4159.81.s1.37_1.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Bonventre, J. V. "Phospholipase A2 and signal transduction." Journal of the American Society of Nephrology 3, nr 2 (sierpień 1992): 128–50. http://dx.doi.org/10.1681/asn.v32128.

Pełny tekst źródła
Streszczenie:
Phospholipases A2 (PLA2) comprise a family of enzymes that hydrolyze the acyl bond at the sn-2 position of phospholipids to generate free fatty acids and lysophospholipids. Different forms of PLA2 are involved in digestion, inflammation, and intercellular and intracellular signal transduction. The sn-2 position of phospholipids in mammalian cells is enriched in arachidonic acid, the precursor of eicosanoids, which have diverse physiologic and pathophysiologic effects on the kidney and other organs. Thus, the regulation of PLA2 activity has important implications for kidney function. PLA2 regulation involves: calcium, pH, protein kinases, GTP-binding proteins, inhibitory and activating proteins, metabolic product inhibition, and transcriptional control. The various roles of arachidonic acid and cyclooxygenase, lipoxygenase, and cytochrome P450 mono-oxygenase products of arachidonic acid metabolism, as intracellular messengers, in the regulation of membrane channel activities, intracellular enzyme activities, cellular calcium homeostasis, mitogenesis, differentiation, cytokine and early response gene expression are discussed.
Style APA, Harvard, Vancouver, ISO itp.
42

ZHU, LING, TIMON CHENG-YI LIU, MIN WU, JIAN-QIN YUAN i TONG-SHENG CHEN. "EXTRAOCULAR CELLULAR PHOTOTRANSDUCTION". Journal of Innovative Optical Health Sciences 02, nr 01 (styczeń 2009): 93–100. http://dx.doi.org/10.1142/s1793545809000358.

Pełny tekst źródła
Streszczenie:
Photobiomodulation (PBM) is a modulation of monochromatic light or laser irradiation (LI) on biosystems. It is reviewed from the viewpoint of extraocular phototransduction in this paper. It was found that LI can induce extraocular phototransduction, and there may be an exact correspondence relationship of LI at different wavelengths and in different dose zones, and cellular signal transduction pathways. The signal transduction pathways can be classified into two types so that the Gs protein-mediated pathways belong to pathway 1, and the other pathways such as protein kinase Cs -mediated pathways and mitogen-activated protein kinase-mediated pathways belong to pathway 2. Almost all the present pathways found to mediate PBM belong to pathway 2, but there should be a pathway 1-mediated PBM. The previous studies were rather preliminary, and therefore further work should be done.
Style APA, Harvard, Vancouver, ISO itp.
43

Van Hoof, C., J. Goris i W. Merlevede. "Phosphotyrosine Protein Phosphatases: Master Key Enzymes in Signal Transduction". Physiology 8, nr 1 (1.02.1993): 3–7. http://dx.doi.org/10.1152/physiologyonline.1993.8.1.3.

Pełny tekst źródła
Streszczenie:
Tyrosine phosphorylation plays a crucial role in the regulation of cellular events. Phosphotyrosine phosphatases are pivotal enzymes in quenching signals and could thus be considered as high-specificity safety devices, screening intra- and extracellular signal transduction to engineer a coordinated control of cell function, proliferation, and differentiation.
Style APA, Harvard, Vancouver, ISO itp.
44

Longhurst, C. M., i L. K. Jennings. "Integrin-mediated signal transduction". Cellular and Molecular Life Sciences (CMLS) 54, nr 6 (1.06.1998): 514–26. http://dx.doi.org/10.1007/s000180050180.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Colpaert, Francis C., i Yves Frégnac. "Paradoxical Signal Transduction in Neurobiological Systems". Molecular Neurobiology 24, nr 1-3 (2001): 145–68. http://dx.doi.org/10.1385/mn:24:1-3:145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Alam-Nazki, Aiman, i J. Krishnan. "An investigation of spatial signal transduction in cellular networks". BMC Systems Biology 6, nr 1 (2012): 83. http://dx.doi.org/10.1186/1752-0509-6-83.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Mazzoni, I. E., H. C. Ledebur, Jr., E. Paramithiotis i N. Cashman. "Lymphoid signal transduction mechanisms linked to cellular prion protein". Biochemistry and Cell Biology 83, nr 5 (1.10.2005): 644–53. http://dx.doi.org/10.1139/o05-058.

Pełny tekst źródła
Streszczenie:
The normal cellular isoform of the prion protein (PrPC) is a glycosylphosphatidylinositol-anchored cell surface protein that is expressed widely, including in lymphoid cells. We compared lectin-induced mitogenesis and selected cell signaling pathways in splenocytes from wild-type BALB/c mice and Zrch Prnp0/0(PrP0/0) mice bred on a BALB/c background for more than 10 generations.3H-thymidine incorporation induced by concanavalin A (Con A) or phytohemagglutinin (PHA) was significantly reduced in PrP0/0splenocytes, most prominently early in activation (24 and 48 h). Con A activation in PrP0/0splenocytes was associated with differences in the phosphorylation (P) patterns of protein kinase C (PKC α/β, but not δ) and the PKC downstream effectors p44/42MAPK (mitogen-activated protein kinase). P-PKC and P-MAPK profiles were similar in wild-type and PrP0/0splenocytes following PMA treatment, indicating that the ability of these 2 enzymes to be phosphorylated is not impaired in the absence of PrPC. Con A-induced calcium fluxes, monitored by indo-1 fluorescence, were equivalent in PrP0/0and PrP+/+splenocytes, suggesting that calcium-dependent mechanisms are not directly implicated in the differential phosphorylation patterns or mitotic responses. Our data indicate that PrP0/0splenocytes display defects in upstream or downstream mechanism(s) that modulate PKCα/β phosphorylation, which in turn affects its capacity to regulate splenocyte mitosis, consistent with a role for PrPCin immune function.Key words: PKC, MAPK, mitosis, bovine spongiform encephalopathy, Creutzfeldt-Jacob disease.
Style APA, Harvard, Vancouver, ISO itp.
48

Narumiya, S. "The Small GTPase Rho: Cellular Functions and Signal Transduction". Journal of Biochemistry 120, nr 2 (1.08.1996): 215–28. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nakahata, Norimichi. "Thromboxane A2: Physiology/pathophysiology, cellular signal transduction and pharmacology". Pharmacology & Therapeutics 118, nr 1 (kwiecień 2008): 18–35. http://dx.doi.org/10.1016/j.pharmthera.2008.01.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Wollman, Roy. "Cellular Variability and Information Flow in Signal Transduction Networks". Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (2018): SY33–1. http://dx.doi.org/10.1254/jpssuppl.wcp2018.0_sy33-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii