Gotowa bibliografia na temat „Cellular signal transduction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cellular signal transduction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cellular signal transduction"
Bae, Yun Soo, i June Seung Lee. "Cellular Signal Transduction". Journal of the Korean Medical Association 44, nr 7 (2001): 716. http://dx.doi.org/10.5124/jkma.2001.44.7.716.
Pełny tekst źródłaMacara, I. G. "Oncogenes and cellular signal transduction". Physiological Reviews 69, nr 3 (1.07.1989): 797–820. http://dx.doi.org/10.1152/physrev.1989.69.3.797.
Pełny tekst źródłaBall, A. "Introduction to Cellular Signal Transduction". Cell Biology International 24, nr 11 (listopad 2000): 855. http://dx.doi.org/10.1006/cbir.2000.0590.
Pełny tekst źródłaMarks, F., i P. Angel. "Signal Transduction into the Nucleus: Fifth Colloquium on Cellular Signal Transduction". Journal of Cancer Research and Clinical Oncology 122, nr 10 (październik 1996): 638–42. http://dx.doi.org/10.1007/bf01221198.
Pełny tekst źródłaMarks, F., i G. F�rstenberger. "Fourth colloquium on cellular signal transduction. Lipid mediators: signal transduction and transport". Journal of Cancer Research and Clinical Oncology 121, nr 7 (lipiec 1995): 434–38. http://dx.doi.org/10.1007/bf01212952.
Pełny tekst źródłaWurthner, Jens U., Amal K. Mukhopadhyay i Claus-Jürgen Peimann. "A cellular automaton model of cellular signal transduction". Computers in Biology and Medicine 30, nr 1 (styczeń 2000): 1–21. http://dx.doi.org/10.1016/s0010-4825(99)00020-7.
Pełny tekst źródłaWetzel, C. H. "Cellular Mechanisms of Olfactory Signal Transduction". Chemical Senses 30, Supplement 1 (1.01.2005): i321—i322. http://dx.doi.org/10.1093/chemse/bjh244.
Pełny tekst źródłaSchmidt-Ullrich, Rupert K., Paul Dent, Steven Grant, Ross B. Mikkelsen i Kristoffer Valerie. "Signal Transduction and Cellular Radiation Responses". Radiation Research 153, nr 3 (marzec 2000): 245–57. http://dx.doi.org/10.1667/0033-7587(2000)153[0245:stacrr]2.0.co;2.
Pełny tekst źródłaLin, James C. A., Jimmy K. Li i Walter H. Chang. "Signal Transduction Pathway of Ultrasound Stimulation on Osteoblasts(Cellular & Tissue Engineering)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 87–88. http://dx.doi.org/10.1299/jsmeapbio.2004.1.87.
Pełny tekst źródłaMattson, Mark P. "Cerebral Signal Transduction". Journal of Molecular Neuroscience 14, nr 3 (2000): 206–8. http://dx.doi.org/10.1385/jmn:14:3:206.
Pełny tekst źródłaRozprawy doktorskie na temat "Cellular signal transduction"
Pat, Betty Kila. "Signal transduction pathways in renal fibrosis /". St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17739.pdf.
Pełny tekst źródłaHaugh, Jason Michael 1972. "Cellular compartmentation effects in receptor-mediated signal transduction". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85364.
Pełny tekst źródłaLeahy, Rachel A. "Signal Transduction and Cellular Differentiation in Airway Epithelium". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1352673026.
Pełny tekst źródłaKim, Hyun Ji. "Development and signal transduction in Dictyostelium". Thesis, University of Oxford, 1999. http://ora.ox.ac.uk/objects/uuid:4ed80c6e-adc8-46d6-aeaf-c853cef7af77.
Pełny tekst źródłaChang, Wen-Tsan. "Molecular studies of signal transduction and development". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360212.
Pełny tekst źródłaBrownlie, Zoe. "Regulation of signal transduction by RGS4". Connect to e-thesis, 2007. http://theses.gla.ac.uk/124/.
Pełny tekst źródłaPh.D. thesis submitted to the Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, 2007. Includes bibliographical references.
Gammon, Benjamin Matthew. "Signal transduction in the cellular slime mould Dictyostelium discoideum". Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279872.
Pełny tekst źródłaManne, Bhanu Kanth. "CLEC-2 SIGNAL TRANSDUCTION IN PLATELET ACTIVATION". Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/340495.
Pełny tekst źródłaPh.D.
Platelets are involved in many processes ranging from fighting microbial infections and triggering inflammation to promoting tumor angiogenesis and metastasis. Nevertheless, the primary physiological function of platelets is to act as essential mediators in maintaining homeostasis of the circulatory system by forming hemostatic thrombi that prevent blood loss and maintain vascular integrity. CLEC-2 is a C-type lectin-like receptor that is highly expressed in platelets and lesser extent, in other cell types such as activated dendritic cells and B cells. Rhodocytin was the first ligand used to identify CLEC-2 receptor and it’s signaling on platelets. In the first chapter we identified a new agonist for CLEC-2 receptor. Fucoidan, a sulfated polysaccharide from fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylation of Syk and Phospholipase Cγ−2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets. Lipid rafts are distinct areas of the plasma membrane implicated in the regulation of signaling in a variety of cells including platelets. A previous study C-type lectin like receptor 2 (CLEC-2) has been reported to activate platelets through a lipid raft-dependent manner. Secreted ADP potentiates CLEC-2-mediated platelet aggregation. We have investigated whether the decrease in CLEC-2-mediated platelet aggregation, previously reported in platelets with disrupted rafts, is a result of the loss of agonist potentiation by ADP. We disrupted platelet lipid rafts with methyl-β-cyclodextrin (MβCD) and measured signaling events downstream of CLEC-2 activation. Lipid raft disruption decreases platelet aggregation induced by CLEC-2 agonists. The inhibition of platelet aggregation by the disruption of lipid rafts was rescued by the exogenous addition of epinephrine but not 2-methylthioadenosine diphosphate (2MeSADP), which suggests that lipid raft disruption effects P2Y12-mediated Gi activation but not Gz. Phosphorylation of Syk (Y525/526) and PLCγ2 (Y759), were not affected by raft disruption in CLEC-2 agonist-stimulated platelets. Furthermore, tyrosine phosphorylation of the CLEC-2 hemi-ITAM was not effected when MβCD disrupts lipid rafts. Lipid rafts do not directly contribute to CLEC-2 receptor activation in platelets. The effects of disruption of lipid rafts in in vitro assays can be attributed to inhibition of ADP feedback that potentiates CLEC-2 signaling. Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an Immune Tyrosine Activation Motif (ITAM) and hemi-ITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In chapter 3, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3-Kinase, which demonstrates that PI3-Kinase regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus our data show, for the first time, that PI3-Kinase and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of CLEC-2 receptor.
Temple University--Theses
Hung, Hiu Wai. "Signal transduction mechanism in xenopus presynaptic differentiation /". View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?BIOL%202003%20HUNG.
Pełny tekst źródłaGong, Yunchen 1965. "Analyses of alternative cell signal transduction pathways". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85552.
Pełny tekst źródłaIn this thesis, apoptosis of bovine mammary gland epithelial cells was demonstrated to be induced when fibronectin, one of the major components of ECM, was degraded by overexpressed tPA via two potential ways: deprivation of attachment and the effects of fibronectin fragments. Secondly, a mathematical model for EGFR activation of the MAPK cascade, in which alternative pathways exist, was explored and it was found that the Shc-dependent pathway is both redundant and dominant. We hypothesize that the Shc-dependent pathway is important for EGFR to compete with other receptors, which need Shc to transduce cell signals; and this pathway is not aimed to increase the robustness of the EGFR cascade. Finally, for the general importance of alternative pathways to the network topology and robustness, several concepts have been proposed to decompose and quantitatively characterize the networks. We demonstrate that the pathnet score is a better assessment for robustness than the molecular connectivity.
Książki na temat "Cellular signal transduction"
Sitaramayya, Ari, red. Introduction to Cellular Signal Transduction. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1990-3.
Pełny tekst źródłaAri, Sitaramayya, red. Introduction to cellular signal transduction. Boston: Birkhauser, 1999.
Znajdź pełny tekst źródłaDennis, Edward A. Transduction mechanisms in cellular signaling. Amsterdam: Elsevier/AP, 2011.
Znajdź pełny tekst źródłaT, Leeds Dorothy, red. Focus on cellular signalling. New York: Nova Science Publishers, 2006.
Znajdź pełny tekst źródłaKlaus, Palme, red. Signals and signal transduction pathways in plants. Dordrecht: Kluwer Academic Publishers, 1994.
Znajdź pełny tekst źródłaYehuda, Gutman, i Lazarovici Philip, red. Toxins and signal transduction. Australia: Harwood Academic Pub., 1997.
Znajdź pełny tekst źródłaF, Greco Lorenzo, i Martino Alessandro L, red. Signal transduction: New research. New York: Nova Science Publishers, 2008.
Znajdź pełny tekst źródłaR, Tatham Peter E., Kramer Ijsbrand M, Knovel (Firm) i ScienceDirect (Online service), red. Signal transduction. Wyd. 2. Amsterdam: Elsevier/Academic Press, 2009.
Znajdź pełny tekst źródłaJ, Van Eldik Linda, i Watterson D. Martin, red. Calmodulin and signal transduction. San Diego: Academic Press, 1998.
Znajdź pełny tekst źródłaKrauss, Gerhard. Biochemistry of signal transduction and regulation. Wyd. 2. Weinheim: Wiley-VCH, 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Cellular signal transduction"
Marks, Friedrich, Ursula Klingmüller i Karin Müller-Decker. "Signal Transduction by Ions". W Cellular Signal Processing, 485–541. Second edition. | New York, NY: Garland Science, 2017.: Garland Science, 2017. http://dx.doi.org/10.4324/9781315165479-14.
Pełny tekst źródłaPark, Gyungsoon, Carol A. Jones i Katherine A. Borkovich. "Signal Transduction Pathways". W Cellular and Molecular Biology of Filamentous Fungi, 50–59. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555816636.ch5.
Pełny tekst źródłaLee, Joanna Y., i Lina M. Obeid. "Ceramide, Aging and Cellular Senescence". W Sphingolipid-Mediated Signal Transduction, 61–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22425-0_5.
Pełny tekst źródłaMarks, Friedrich, Ursula Klingmüller i Karin Müller-Decker. "Signal Transduction by Proteolysis, and Programmed Cell Death". W Cellular Signal Processing, 453–83. Second edition. | New York, NY: Garland Science, 2017.: Garland Science, 2017. http://dx.doi.org/10.4324/9781315165479-13.
Pełny tekst źródłaMarks, Friedrich, Ursula Klingmüller i Karin Müller-Decker. "Signal Transduction by Receptors with Seven Transmembrane Domains". W Cellular Signal Processing, 191–227. Second edition. | New York, NY: Garland Science, 2017.: Garland Science, 2017. http://dx.doi.org/10.4324/9781315165479-5.
Pełny tekst źródłaMarks, Friedrich, Ursula Klingmüller i Karin Müller-Decker. "Signal Transduction by Serine/Threonine Kinase-Coupled Receptors". W Cellular Signal Processing, 229–47. Second edition. | New York, NY: Garland Science, 2017.: Garland Science, 2017. http://dx.doi.org/10.4324/9781315165479-6.
Pełny tekst źródłaBoyd, Jonathan W., Richard R. Neubig, Alice Han i Maren Prediger. "Introduction to Cellular Signal Transduction". W Cellular Signal Transduction in Toxicology and Pharmacology, 1–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119060208.ch1.
Pełny tekst źródłaNeubig, Richard R., Jonathan W. Boyd, Julia A. Mouch i Nicole Prince. "Mechanisms of Cellular Signal Transduction". W Cellular Signal Transduction in Toxicology and Pharmacology, 21–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119060208.ch2.
Pełny tekst źródłaNiederfellner, Gerhard. "Signal Transduction and Cellular Communication". W Biochemical Pathways, 286–324. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118657072.ch7.
Pełny tekst źródłaGaney, Patricia E., i Sean A. Misek. "Signal Transduction in Disease". W Cellular Signal Transduction in Toxicology and Pharmacology, 73–111. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119060208.ch4.
Pełny tekst źródłaStreszczenia konferencji na temat "Cellular signal transduction"
Liu, Yuan-Wei, i Chun-Liang Lin. "Idea of Control Design for Cellular Signal Transduction Pathway of Ras". W International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). IEEE, 2007. http://dx.doi.org/10.1109/iccima.2007.267.
Pełny tekst źródłaUzgare, Rajneesh, Thomas Hundley, Dhanrajan Tiruchinapalli, Anna Solomon, Cheryl Horton i Hao Chen. "Abstract 236: Characterizing cellular signal transduction cross-talk using in-cell kinase screen". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-236.
Pełny tekst źródłaMednieks, M. I. "Secretory proteins characteristic of environmental changes in cellular signal transduction: Expression in oral fluid". W HADRONS AND NUCLEI: First International Symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1302484.
Pełny tekst źródłaRattanakul, Chontita, i Yongwimon Lenbury. "Cellular automata simulation of signal transduction and calcium dynamics with healthy and faulty receptor trafficking". W 2016 Annual IEEE Systems Conference (SysCon). IEEE, 2016. http://dx.doi.org/10.1109/syscon.2016.7490536.
Pełny tekst źródłaKYODA, KOJI M., MICHIKO MURAKI i HIROAKI KITANO. "CONSTRUCTION OF A GENERALIZED SIMULATOR FOR MULTI-CELLULAR ORGANISMS AND ITS APPLICATION TO SMAD SIGNAL TRANSDUCTION". W Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447331_0030.
Pełny tekst źródłaTakai, Erica, Clark T. Hung, Aurea Tucay, Djordje Djukic, Mary L. Linde, Kevin D. Costa, James T. Yardley i X. Edward Guo. "Design of a Microfluidic System for 3D Culture of Osteocytes In Vitro". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33229.
Pełny tekst źródłaLeDuc, Philip. "Linking Molecular to Cellular Biomechanics With Nano- and Micro-Technology". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43987.
Pełny tekst źródłaHATTA-OHASHI, Y., T. TAKAHASHI i H. SUZUKI. "VISUALIZATION OF SEQUENTIAL RESPONSE IN INTRA CELLULAR SIGNAL TRANSDUCTION CASCADE BY FLUORESCENCE AND LUMINESCENCE IMAGING IN THE SAME LIVING CELL". W Proceedings of the 15th International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812839589_0081.
Pełny tekst źródłaYang, Jui-Ming, i Philip R. LeDuc. "Three-Dimensional Laminar Flow for Localized Cellular Stimulation". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61643.
Pełny tekst źródłaGuilak, Farshid, i H. Ping Ting-Beall. "The Effects of Osmotic Pressure on the Viscoelastic and Physical Properties of Articular Chondrocytes". W ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0398.
Pełny tekst źródłaRaporty organizacyjne na temat "Cellular signal transduction"
Merrill, Alfred H., i Jr. Subcellular Signal Transduction Systems in the Cellular Trauma of Ischemia. Fort Belvoir, VA: Defense Technical Information Center, listopad 1990. http://dx.doi.org/10.21236/ada229876.
Pełny tekst źródłaNaim, Michael, Andrew Spielman, Shlomo Nir i Ann Noble. Bitter Taste Transduction: Cellular Pathways, Inhibition and Implications for Human Acceptance of Agricultural Food Products. United States Department of Agriculture, luty 2000. http://dx.doi.org/10.32747/2000.7695839.bard.
Pełny tekst źródłaPhilosoph-Hadas, Sonia, Peter B. Kaufman, Shimon Meir i Abraham H. Halevy. Inhibition of the Gravitropic Shoot Bending in Stored Cut Flowers Through Control of Their Graviperception: Involvement of the Cytoskeleton and Cytosolic Calcium. United States Department of Agriculture, grudzień 2005. http://dx.doi.org/10.32747/2005.7586533.bard.
Pełny tekst źródłaO'Neill, Sharman, Abraham Halevy i Amihud Borochov. Molecular Genetic Analysis of Pollination-Induced Senescence in Phalaenopsis Orchids. United States Department of Agriculture, 1991. http://dx.doi.org/10.32747/1991.7612837.bard.
Pełny tekst źródłaPhilosoph-Hadas, Sonia, Peter Kaufman, Shimon Meir i Abraham Halevy. Signal Transduction Pathway of Hormonal Action in Control and Regulation of the Gravitropic Response of Cut Flowering Stems during Storage and Transport. United States Department of Agriculture, październik 1999. http://dx.doi.org/10.32747/1999.7695838.bard.
Pełny tekst źródłaAvni, Adi, i Kirankumar S. Mysore. Functional Genomics Approach to Identify Signaling Components Involved in Defense Responses Induced by the Ethylene Inducing Xyalanase Elicitor. United States Department of Agriculture, grudzień 2009. http://dx.doi.org/10.32747/2009.7697100.bard.
Pełny tekst źródłaOlszewski, Neil, i David Weiss. Role of Serine/Threonine O-GlcNAc Modifications in Signaling Networks. United States Department of Agriculture, wrzesień 2010. http://dx.doi.org/10.32747/2010.7696544.bard.
Pełny tekst źródła