Gotowa bibliografia na temat „Cellular Polymer Foams”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cellular Polymer Foams”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cellular Polymer Foams"
Du, Changling, David Anthony Fikhman i Mary Beth Browning Monroe. "Shape Memory Polymer Foams with Phenolic Acid-Based Antioxidant Properties". Antioxidants 11, nr 6 (1.06.2022): 1105. http://dx.doi.org/10.3390/antiox11061105.
Pełny tekst źródłaWoolley, W. D. "Are Foams a Fire Hazard?" Cellular Polymers 4, nr 2 (marzec 1985): 81–115. http://dx.doi.org/10.1177/026248938500400201.
Pełny tekst źródłaSuethao, Supitta, Darshil U. Shah i Wirasak Smitthipong. "Recent Progress in Processing Functionally Graded Polymer Foams". Materials 13, nr 18 (13.09.2020): 4060. http://dx.doi.org/10.3390/ma13184060.
Pełny tekst źródłaHamdi, Ouassim, i Denis Rodrigue. "Auxetic Polymer Foams: Production, Modeling and Applications". Current Applied Polymer Science 4, nr 3 (grudzień 2021): 159–74. http://dx.doi.org/10.2174/2452271604666211130123921.
Pełny tekst źródłaKishimoto, Satoshi, Toru Shimizu, Fu Xing Yin, Kimiyoshi Naito i Yoshihisa Tanaka. "Mechanical Properties of Metallic Closed Cellular Materials Containing Polymer Fabricated by Polymer Penetration". Materials Science Forum 654-656 (czerwiec 2010): 2628–31. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2628.
Pełny tekst źródłaFan, Zhi Geng, Chang Qing Chen i Wen Jun Hu. "A Numerical Study on the Large Deformations of Polymer Foams with Spherical Pores". Advanced Materials Research 295-297 (lipiec 2011): 1581–85. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.1581.
Pełny tekst źródłaLagzdiņš, Aivars, Alberts Zilaucs, Ilze Beverte i Jānis Andersons. "Modeling the Nonlinear Deformation of Highly Porous Cellular Plastics Filled with Clay Nanoplatelets". Materials 15, nr 3 (28.01.2022): 1033. http://dx.doi.org/10.3390/ma15031033.
Pełny tekst źródłaRomán-Lorza, S., M. A. Rodriguez-Perez i J. A. De Saja Sáez. "Cellular Structure of Halogen-Free Flame Retardant Foams Based on LDPE". Cellular Polymers 28, nr 4 (lipiec 2009): 249–68. http://dx.doi.org/10.1177/026248930902800402.
Pełny tekst źródłaSoriano-Corral, F., L. A. Calva-Nava, J. F. Hernández-Gámez, E. Hernández-Hernández, P. González-Morones, C. A. Ávila-Orta, G. Soria-Arguello, Heidi A. Fonseca-Florido, Carlos A. Covarrubias-Gordillo i Ramón E. Díaz de León-Gómez. "Influence of Ethylene Plasma Treatment of Agave Fiber on the Cellular Morphology and Compressive Properties of Low-Density Polyethylene/Ethylene Vinyl Acetate Copolymer/Agave Fiber Composite Foams". International Journal of Polymer Science 2021 (25.03.2021): 1–13. http://dx.doi.org/10.1155/2021/9150310.
Pełny tekst źródłaHarikrishnan, S., Kamlesh Kumar, V. Venkateswara Rao i Ajay Misra. "Shock Wave Behaviour of Polymeric Materials for Detonation Waveshapers". Defence Science Journal 71, nr 6 (22.10.2021): 730–36. http://dx.doi.org/10.14429/dsj.71.16943.
Pełny tekst źródłaRozprawy doktorskie na temat "Cellular Polymer Foams"
Forest, Charlène. "Preparation of nano-cellular foams from nanostructured polymer materials by means of CO2 foaming process". Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10250.
Pełny tekst źródłaThis work focuses on the fabrication of nano-cellular polymer materials by means of a CO2 batch foaming process. To produce such materials, the foaming has to be induced in nano-structured polymer materials in order to favour heterogeneous nucleation and thus to obtain high nucleation rate and high cell density. The foaming of ABS terpolymers and nanostructured PMMAs was investigated, with the aim of producing nano-cellular foams with low density (lower than 0.3 g.cm-3) and an average cell size of 100 nm, which corresponds to required foam morphologies for super thermal insulating applications. It has been shown that nucleation, and thus cell density, directly depends on the content and morphology of nucleating agents, corresponding to dispersed polymer immiscible phases. The production of nano-cellular materials required the understanding of cell growth mechanisms, the role of CO2 as blowing agent and plasticiser and process optimisation. Specifically, the influence of viscoelastic behaviour of polymer materials and surface forces on cell formation was also investigated. It was found that the foaming occurred in viscoelastic media, with transitional behaviour between solid and liquid, depending on foaming temperature and molar mass of polymers
Režnáková, Ema. "Příprava a charakterizace lehčených polymerních materiálů s hierarchickou celulární strukturou". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-414127.
Pełny tekst źródłaKhunniteekool, Chonlada. "Structure/property relationships of cross-linked polyethylene and ethylene vinyl acetate copolymer foams". Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390453.
Pełny tekst źródłaHanna, Richard Matthew 1979. "Viscoelastic polymer analysis : experimental, data analysis, and modeling techniques applied to cellular silicone foam". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/89357.
Pełny tekst źródłaSharudin, Rahida Wati Binti. "Carbon Dioxide Physical Foaming of Polymer Blends:-Blend Morphology and Cellular Structure-". 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/161019.
Pełny tekst źródłaHána, Tomáš. "Funkční polymerní pěny". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-376873.
Pełny tekst źródłaSen, Indraneel. "Degradation Mechanism of Expanded Polystyrene (EPS) Foam in Lost Foam Casting, PIPS Approach for Synthesis and Novel Expansion Techniques for Cellular Foam". 2007. http://trace.tennessee.edu/utk_graddiss/299.
Pełny tekst źródłaPinto, Susana Cristina dos Santos. "Development and characterization of multifunctional hybrid structures based on cellular metals". Doctoral thesis, 2020. http://hdl.handle.net/10773/28911.
Pełny tekst źródłaO interesse em materiais celulares aumentou significativamente nas últimas duas décadas, refletindo a crescente procura por estruturas leves e multifuncionais. A relação entre baixo peso e elevado desempenho mecânico, acústico e térmico, torna-os atrativos para aplicações em engenharia tais como civil, automóvel, aeroespacial, entre outras. As espumas metálicas de porosidade aberta (OCF) são materiais funcionais promissores caracterizados por baixo peso, elevada área superficial interna, reciclabilidade e inflamabilidade, no entanto são mecanicamente fracas. Os investigadores descobriram neste tópico uma oportunidade na exploração destes materiais, reforçando-os com polímeros de modo a melhorar o seu desempenho e diversificar a sua aplicação. No entanto, o trabalho desenvolvido neste campo ainda é escasso e focado principalmente no preenchimento dos poros das OCF com polímeros densos e na sua caracterização mecânica. O objetivo deste trabalho incidiu no fabrico de diversas espumas híbridas tendo como base o preenchimento de OCF com diversos nanocompósitos poliméricos de modo a obter materiais multifuncionais, de preferência leves, fornecendo alternativas promissoras aos materiais que já existem no mercado. Foram selecionados para o preenchimento, celulose bacteriana (BC) e poliuretana (PUF) na forma de espumas, cortiça aglomerada e polidimetilsiloxano (PDMS) e epóxido (EP) como materiais densos. Antes da incorporação na OCF, os materiais de preenchimento foram reforçados com materiais à base de grafeno (GBMs) nomeadamente óxido de grafeno (GO), óxido de grafeno reduzido (rGO) ou nanoplaquetas de grafeno (GNPs) de modo a melhorar as propriedades mecânicas, térmicas e acústicas e conferir a propriedade retardamento de chama. Globalmente, a adição de GBMs melhorou as propriedades mecânicas das espumas de BC e de PUF, mas diminuiu a resistência mecânica dos polímeros densos devido aos espaços vazios criados nas matrizes poliméricas. Adicionalmente, os GBMs utilizados não aumentaram consideravelmente a condutividade térmica, o que, para aplicações de isolamento pode ser uma mais valia. De referir a eficiência da presença dos GBMs como agentes de retardação de chama dos nanocompósitos. Dada a variedade de propriedades dos materiais produzidos, as suas aplicações poderão ser múltiplas. As estruturas híbridas constituídas por OCF e materiais mais densos (PDMS ou EP) poderão ter aplicações como componentes estruturais, pois apresentam elevada resistência e boa capacidade de absorção de energia. As espumas híbridas resultantes do preenchimento das OCF com espumas nanocompósitas de BC ou PUF ou ainda aglomerados de cortiça com boas propriedades de isolamento acústico e térmico leveza poderão encontrar aplicações onde estas propriedades são requeridas.
Programa Doutoral em Engenharia Mecânica
Książki na temat "Cellular Polymer Foams"
Symposium on Cellular Metals and Polymers (2004 Fürth, Germany). Cellular metals and polymers: CMaP : proceedings of the Symposium on Cellular Metals and Polymers : sponsored by the Deutsche Forschungsgemeinschaft (DFG) : held October 12-14, 2004, in Fürth, Germany. Uetikon-Zuerich, Switzerland: Trans Tech Publications Ltd, 2005.
Znajdź pełny tekst źródłaVipin, Kumar, Advani Suresh G, American Society of Mechanical Engineers. Materials Division. i American Society of Mechanical Engineers. Winter Meeting, red. Cellular polymers: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York: ASME, 1992.
Znajdź pełny tekst źródła(Editor), J. M. Buist, S. J. Grayson (Editor) i W. D. Woolley (Editor), red. Fire and Cellular Polymers. Elseview Applied Science, 1986.
Znajdź pełny tekst źródła(Editor), R. F. Singer, C. Korner (Editor), V. Altstadt (Editor) i H. Munstedt (Editor), red. Cellular Metals And Polymers 2004. Trans Tech Publications, 2005.
Znajdź pełny tekst źródłaGa.) American Society of Mechanical Engineers. Winter Meeting (1991 : Atlanta. Cellular Polymers Presented at the Winter Annual Meeting of the Amse: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, ... November 8-13, 1992 (MD (Series), V. 38.). American Society of Mechanical Engineers, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Cellular Polymer Foams"
Paul, K. T. "Fire, Foams and Furniture". W Fire and Cellular Polymers, 135–63. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_9.
Pełny tekst źródłaWoolley, W. D. "Are Foams a Fire Hazard?" W Fire and Cellular Polymers, 25–59. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-3443-6_3.
Pełny tekst źródłaVirr, L. "Fire and Foams in Transport Applications — Aircraft". W Fire and Cellular Polymers, 165–73. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_10.
Pełny tekst źródłaHitch, M. J., i D. C. Rolph. "PVC Foams: Their Use and Fire Behaviour". W Fire and Cellular Polymers, 219–37. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_14.
Pełny tekst źródłaWiedermann, R. "Fire Properties of Isocyanate Based Rigid Foams". W Fire and Cellular Polymers, 239–49. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_15.
Pełny tekst źródłaTroitzsch, J. H. "How Do Foams Perform Under Fire Conditions?" W Fire and Cellular Polymers, 77–91. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_5.
Pełny tekst źródłaGrayson, S. J., J. Hume i D. A. Smith. "Multifunctional Smoke- and Gas-Suppressant Systems for Polyurethane Foams". W Fire and Cellular Polymers, 289–313. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_19.
Pełny tekst źródłaCunningham, A., i N. C. Hilyard. "Physical behaviour of polymeric foams — an overview". W Low density cellular plastics, 1–21. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1256-7_1.
Pełny tekst źródłaCreyf, H., i J. Fishbein. "Advance of Flexible Polyurethane Foam Technology". W Fire and Cellular Polymers, 279–88. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_18.
Pełny tekst źródłaBriggs, P. J. "Fire Behaviour of Rigid Foam Insulation Boards". W Fire and Cellular Polymers, 117–33. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Cellular Polymer Foams"
Kishimoto, Satoshi, Kimiyoshi Naito, Toru Shimizu i Fuxing Yin. "Mechanical Properties of Metallic Cellular Materials With Polymer". W ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3725.
Pełny tekst źródłaKishimoto, Satoshi, Kimiyoshi Naito, Toru Shimizu i Fuxing Yin. "Mechanical Properties of Closed Cellular Materials Containing Polymer". W ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1273.
Pełny tekst źródłaHanda, Y. Paul, i Zhiyi Zhang. "New Pathways to Microcellular and Ultramicrocellular Polymeric Foams". W ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0917.
Pełny tekst źródłaDupe`re, Iain D. J., Ann P. Dowling i Tian J. Lu. "The Absorption of Sound in Cellular Foams". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60618.
Pełny tekst źródłaQiu, Xunlin, Werner Wirges, Reimund Gerhard, Ming Ren, Mattewos Tefferi i Yang Cao. "Electrical-insulation behavior of cellular polymer foams in comparison to their piezoelectret properties". W 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2016. http://dx.doi.org/10.1109/ichve.2016.7800761.
Pełny tekst źródłaMiyamoto, Ryoma, Tatsumi Utano, Shunya Yasuhara, Shota Ishihara i Masahiro Ohshima. "Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams". W PROCEEDINGS OF PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918399.
Pełny tekst źródłaMcRae, Joe D., Hani E. Naguib i Noureddine Atalla. "Mechanical and Acoustic Performance of Compression Molded Open Cell Polypropylene Foams". W ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-447.
Pełny tekst źródłaPetrossian, Gayaneh, i Amir Ameli. "Preparation of Highly Loaded Piezo-Composite Foams With High Expansion and Low Permittivity". W ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3807.
Pełny tekst źródłaCafiero, Livia, Luigi Sorrentino i Salvatore Iannace. "Improving the cellular morphology in high performance thermoplastics foams through blending". W TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876879.
Pełny tekst źródłaVerdolotti, Letizia, Barbara Liguori, Ilaria Capasso, Domenico Caputo, Marino Lavorgna i Salvatore Iannace. "Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix". W TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876819.
Pełny tekst źródła