Artykuły w czasopismach na temat „Cellular Delivery - Anionic Nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cellular Delivery - Anionic Nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Maity, Amit Ranjan, i Nikhil R. Jana. "Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles". Journal of Physical Chemistry C 115, nr 1 (14.12.2010): 137–44. http://dx.doi.org/10.1021/jp108828c.
Pełny tekst źródłaXu, Zhi Ping, i G. Q. (Max) Lu. "Layered double hydroxide nanomaterials as potential cellular drug delivery agents". Pure and Applied Chemistry 78, nr 9 (1.01.2006): 1771–79. http://dx.doi.org/10.1351/pac200678091771.
Pełny tekst źródłaChoi, Soo-Jin, Jae-Min Oh, Taeun Park i Jin-Ho Choy. "Cellular Toxicity of Inorganic Hydroxide Nanoparticles". Journal of Nanoscience and Nanotechnology 7, nr 11 (1.11.2007): 4017–20. http://dx.doi.org/10.1166/jnn.2007.085.
Pełny tekst źródłaChoi, Soo-Jin, Jae-Min Oh, Taeun Park i Jin-Ho Choy. "Cellular Toxicity of Inorganic Hydroxide Nanoparticles". Journal of Nanoscience and Nanotechnology 7, nr 11 (1.11.2007): 4017–20. http://dx.doi.org/10.1166/jnn.2007.18081.
Pełny tekst źródłaBerger, Eric, Dalibor Breznan, Sandra Stals, Viraj J. Jasinghe, David Gonçalves, Denis Girard, Sylvie Faucher, Renaud Vincent, Alain R. Thierry i Carole Lavigne. "Cytotoxicity assessment, inflammatory properties, and cellular uptake of Neutraplex lipid-based nanoparticles in THP-1 monocyte-derived macrophages". Nanobiomedicine 4 (1.01.2017): 184954351774625. http://dx.doi.org/10.1177/1849543517746259.
Pełny tekst źródłaTsai, Li-Hui, Chia-Hsiang Yen, Hao-Ying Hsieh i Tai-Horng Young. "Doxorubicin Loaded PLGA Nanoparticle with Cationic/Anionic Polyelectrolyte Decoration: Characterization, and Its Therapeutic Potency". Polymers 13, nr 5 (25.02.2021): 693. http://dx.doi.org/10.3390/polym13050693.
Pełny tekst źródłaRotan, Olga, Katharina N. Severin, Simon Pöpsel, Alexander Peetsch, Melisa Merdanovic, Michael Ehrmann i Matthias Epple. "Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles". Beilstein Journal of Nanotechnology 8 (7.02.2017): 381–93. http://dx.doi.org/10.3762/bjnano.8.40.
Pełny tekst źródłaUto, Tomofumi, Takami Akagi, Mitsuru Akashi i Masanori Baba. "Induction of Potent Adaptive Immunity by the Novel Polyion Complex Nanoparticles". Clinical and Vaccine Immunology 22, nr 5 (25.03.2015): 578–85. http://dx.doi.org/10.1128/cvi.00080-15.
Pełny tekst źródłaCotta, Karishma Berta, Sarika Mehra i Rajdip Bandyopadhyaya. "pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages". Beilstein Journal of Nanotechnology 12 (7.10.2021): 1127–39. http://dx.doi.org/10.3762/bjnano.12.84.
Pełny tekst źródłaTukova, Anastasiia, Inga Christine Kuschnerus, Alfonso Garcia-Bennett, Yuling Wang i Alison Rodger. "Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein". Nanomaterials 11, nr 10 (29.09.2021): 2565. http://dx.doi.org/10.3390/nano11102565.
Pełny tekst źródłaKont, Ayse, Monique C. P. Mendonça, Michael F. Cronin, Mary R. Cahill i Caitriona M. O’Driscoll. "Co-Formulation of Amphiphilic Cationic and Anionic Cyclodextrins Forming Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukaemia". International Journal of Molecular Sciences 23, nr 17 (29.08.2022): 9791. http://dx.doi.org/10.3390/ijms23179791.
Pełny tekst źródłaTripathi, R. M., Sun-Young Yoon, Dohee Ahn i Sang J. Chung. "Facile Synthesis of Triangular and Hexagonal Anionic Gold Nanoparticles and Evaluation of Their Cytotoxicity". Nanomaterials 9, nr 12 (12.12.2019): 1774. http://dx.doi.org/10.3390/nano9121774.
Pełny tekst źródłaGuagliardo, Roberta, Pieterjan Merckx, Agata Zamborlin, Lynn De Backer, Mercedes Echaide, Jesus Pérez-Gil, Stefaan C. De Smedt i Koen Raemdonck. "Nanocarrier Lipid Composition Modulates the Impact of Pulmonary Surfactant Protein B (SP-B) on Cellular Delivery of siRNA". Pharmaceutics 11, nr 9 (23.08.2019): 431. http://dx.doi.org/10.3390/pharmaceutics11090431.
Pełny tekst źródłaMazzaglia, Antonino, Norberto Micali, Luigi Monsù Scolaro, Maria Teresa Sciortino, Salvatore Sortino i Valentina Villari. "Design of photosensitizer/cyclodextrin nanoassemblies: spectroscopy, intracellular delivery and photodamage". Journal of Porphyrins and Phthalocyanines 14, nr 08 (sierpień 2010): 661–77. http://dx.doi.org/10.1142/s1088424610002562.
Pełny tekst źródłaKhalil, Ali, Saad Saba, Catherine Ribault, Manuel Vlach, Pascal Loyer, Olivier Coulembier i Sandrine Cammas-Marion. "Synthesis of Poly(Dimethylmalic Acid) Homo- and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells". Polymers 12, nr 8 (29.07.2020): 1705. http://dx.doi.org/10.3390/polym12081705.
Pełny tekst źródłaStraehla, Joelle, Cynthia Hajal, Hannah Safford, Giovanni Offeddu, Jeffrey Wyckoff, Roger Kamm i Paula Hammond. "EXTH-26. LAYER-BY-LAYER NANOPARTICLES DESIGNED FOR DUAL BLOOD-BRAIN BARRIER AND GLIOMA TARGETING". Neuro-Oncology 23, Supplement_6 (2.11.2021): vi168—vi169. http://dx.doi.org/10.1093/neuonc/noab196.665.
Pełny tekst źródłaKim, Tae-Hyun, Gyeong Jin Lee, Joo-Hee Kang, Hyoung-Jun Kim, Tae-il Kim i Jae-Min Oh. "Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment". BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/193401.
Pełny tekst źródłaTseu, Gloria Yi Wei, i Khairul Azfar Kamaruzaman. "A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer". Molecules 28, nr 3 (3.02.2023): 1498. http://dx.doi.org/10.3390/molecules28031498.
Pełny tekst źródłaBusmann, Eike Folker, i Henrike Lucas. "Particle Engineering of Innovative Nanoemulsion Designs to Modify the Accumulation in Female Sex Organs by Particle Size and Surface Charge". Pharmaceutics 14, nr 2 (27.01.2022): 301. http://dx.doi.org/10.3390/pharmaceutics14020301.
Pełny tekst źródłaDas, Horváth, Šafranko, Jokić, Széchenyi i Kőszegi. "Antimicrobial Activity of Chamomile Essential Oil: Effect of Different Formulations". Molecules 24, nr 23 (26.11.2019): 4321. http://dx.doi.org/10.3390/molecules24234321.
Pełny tekst źródłaDas, Sourav, Barbara Vörös-Horváth, Tímea Bencsik, Giuseppe Micalizzi, Luigi Mondello, Györgyi Horváth, Tamás Kőszegi i Aleksandar Széchenyi. "Antimicrobial Activity of Different Artemisia Essential Oil Formulations". Molecules 25, nr 10 (21.05.2020): 2390. http://dx.doi.org/10.3390/molecules25102390.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi i Hiroki Hamada. "Transdermal Delivery of Anionic Phospholipid Nanoparticles Containing Fullerene". Natural Product Communications 17, nr 2 (luty 2022): 1934578X2210784. http://dx.doi.org/10.1177/1934578x221078444.
Pełny tekst źródłaYuan, Hong, Wei Zhang, Yong-Zhong Du i Fu-Qiang Hu. "Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery". International Journal of Pharmaceutics 392, nr 1-2 (15.06.2010): 224–31. http://dx.doi.org/10.1016/j.ijpharm.2010.03.025.
Pełny tekst źródłaParlea, Lorena, Anu Puri, Wojciech Kasprzak, Eckart Bindewald, Paul Zakrevsky, Emily Satterwhite, Kenya Joseph, Kirill A. Afonin i Bruce A. Shapiro. "Cellular Delivery of RNA Nanoparticles". ACS Combinatorial Science 18, nr 9 (26.08.2016): 527–47. http://dx.doi.org/10.1021/acscombsci.6b00073.
Pełny tekst źródłaFaraji, Amir H., i Peter Wipf. "Nanoparticles in cellular drug delivery". Bioorganic & Medicinal Chemistry 17, nr 8 (kwiecień 2009): 2950–62. http://dx.doi.org/10.1016/j.bmc.2009.02.043.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi i Hiroki Hamada. "Piceid Nanoparticles Stabilized by Anionic Phospholipids for Transdermal Delivery". Natural Product Communications 15, nr 5 (maj 2020): 1934578X2092557. http://dx.doi.org/10.1177/1934578x20925578.
Pełny tekst źródłaPamujula, Sarala, Sidhartha Hazari, Gevoni Bolden, Richard A. Graves, Dakshinamurthy Devanga Chinta, Srikanta Dash, Vimal Kishore i Tarun K. Mandal. "Cellular delivery of PEGylated PLGA nanoparticles". Journal of Pharmacy and Pharmacology 64, nr 1 (24.11.2011): 61–67. http://dx.doi.org/10.1111/j.2042-7158.2011.01376.x.
Pełny tekst źródłaHuang, Xiaomeng, Sebastian Schwind, Ann-Kathrin Eisfeld, Bo Yu, Ramasamy Santhanam, Pia Hoellerbauer, Yan Jin i in. "Therapeutic Targeting of the RAS-Pathway by Synthetic Mir-181a Nanoparticles in Acute Myeloid Leukemia (AML)." Blood 120, nr 21 (16.11.2012): 2422. http://dx.doi.org/10.1182/blood.v120.21.2422.2422.
Pełny tekst źródłaChavanpatil, Mahesh D., Ayman Khdair i Jayanth Panyam. "Nanoparticles for Cellular Drug Delivery: Mechanisms and Factors Influencing Delivery". Journal of Nanoscience and Nanotechnology 6, nr 9 (1.09.2006): 2651–63. http://dx.doi.org/10.1166/jnn.2006.443.
Pełny tekst źródłaWendorf, Janet, James Chesko, Jina Kazzaz, Mildred Ugozzoli, Michael Vajdy, Derek O'Hagan i Manmohan Singh. "A comparison of anionic nanoparticles and microparticles as vaccine delivery systems". Human Vaccines 4, nr 1 (styczeń 2008): 44–49. http://dx.doi.org/10.4161/hv.4.1.4886.
Pełny tekst źródłaMocanu, G., M. Nichifor, L. Picton, E. About-Jaudet i D. Le Cerf. "Preparation and characterization of anionic pullulan thermoassociative nanoparticles for drug delivery". Carbohydrate Polymers 111 (październik 2014): 892–900. http://dx.doi.org/10.1016/j.carbpol.2014.05.037.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi, Kei shimoda i Hiroki Hamada. "Transdermal Delivery of Small-Sized Resveratrol Nanoparticles to Epidermis Using Anionic Phospholipids". Natural Product Communications 15, nr 9 (wrzesień 2020): 1934578X2095144. http://dx.doi.org/10.1177/1934578x20951443.
Pełny tekst źródłaHussain, Majad, Mikhail Shchepinov, Muhammad Sohail, Ibrahim F. Benter, Andrew J. Hollins, Edwin M. Southern i Saghir Akhtar. "A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides". Journal of Controlled Release 99, nr 1 (wrzesień 2004): 139–55. http://dx.doi.org/10.1016/j.jconrel.2004.06.009.
Pełny tekst źródłaInsua, Ignacio, Evangelos Liamas, Zhenyu Zhang, Anna F. A. Peacock, Anne Marie Krachler i Francisco Fernandez-Trillo. "Enzyme-responsive polyion complex (PIC) nanoparticles for the targeted delivery of antimicrobial polymers". Polymer Chemistry 7, nr 15 (2016): 2684–90. http://dx.doi.org/10.1039/c6py00146g.
Pełny tekst źródłaUchida, Noriyuki, Masayoshi Yanagi i Hiroki Hamada. "Size-Tunable Paclitaxel Nanoparticles Stabilized by Anionic Phospholipids for Transdermal Delivery Applications". Natural Product Communications 15, nr 3 (1.03.2020): 1934578X1990068. http://dx.doi.org/10.1177/1934578x19900684.
Pełny tekst źródłaFeng, Song, Sisi Cui, Jing Jin i Yueqing Gu. "Macrophage as cellular vehicles for delivery of nanoparticles". Journal of Innovative Optical Health Sciences 07, nr 03 (maj 2014): 1450023. http://dx.doi.org/10.1142/s1793545814500230.
Pełny tekst źródłaXu, Zhi Ping, Qing Hua Zeng, Gao Qing Lu i Ai Bing Yu. "Inorganic nanoparticles as carriers for efficient cellular delivery". Chemical Engineering Science 61, nr 3 (luty 2006): 1027–40. http://dx.doi.org/10.1016/j.ces.2005.06.019.
Pełny tekst źródłaLamson, Nicholas G., Adrian Berger, Katherine C. Fein i Kathryn A. Whitehead. "Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability". Nature Biomedical Engineering 4, nr 1 (4.11.2019): 84–96. http://dx.doi.org/10.1038/s41551-019-0465-5.
Pełny tekst źródłaSoto, Ernesto R., Abaigeal C. Caras, Lindsey C. Kut, Melissa K. Castle i Gary R. Ostroff. "Glucan Particles for Macrophage Targeted Delivery of Nanoparticles". Journal of Drug Delivery 2012 (13.10.2012): 1–13. http://dx.doi.org/10.1155/2012/143524.
Pełny tekst źródłaMitrach, Franziska, Maximilian Schmid, Magali Toussaint, Sladjana Dukic-Stefanovic, Winnie Deuther-Conrad, Heike Franke, Alexander Ewe i in. "Amphiphilic Anionic Oligomer-Stabilized Calcium Phosphate Nanoparticles with Prospects in siRNA Delivery via Convection-Enhanced Delivery". Pharmaceutics 14, nr 2 (29.01.2022): 326. http://dx.doi.org/10.3390/pharmaceutics14020326.
Pełny tekst źródłaLiu, Yang, Ziyuan Song, Nan Zheng, Kenya Nagasaka, Lichen Yin i Jianjun Cheng. "Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles". Nanoscale 10, nr 32 (2018): 15339–49. http://dx.doi.org/10.1039/c8nr03976c.
Pełny tekst źródłaȘtiufiuc, Gabriela Fabiola, Ștefan Nițică, Valentin Toma, Cristian Iacoviță, Dietrich Zahn, Romulus Tetean, Emil Burzo, Constantin Mihai Lucaciu i Rareș Ionuț Știufiuc. "Synergistical Use of Electrostatic and Hydrophobic Interactions for the Synthesis of a New Class of Multifunctional Nanohybrids: Plasmonic Magneto-Liposomes". Nanomaterials 9, nr 11 (15.11.2019): 1623. http://dx.doi.org/10.3390/nano9111623.
Pełny tekst źródłaGarg, Ashish, Sweta Garg, Nitendra K. Sahu, Sarita Rani, Umesh Gupta i Awesh K. Yadav. "Heparin appended ADH-anionic polysaccharide nanoparticles for site-specific delivery of usnic acid". International Journal of Pharmaceutics 557 (luty 2019): 238–53. http://dx.doi.org/10.1016/j.ijpharm.2018.12.049.
Pełny tekst źródłaKim, Hyungjin, Takami Akagi i Mitsuru Akashi. "Preparation of CpG ODN-encapsulated Anionic Poly(amino acid) Nanoparticles for Gene Delivery". Chemistry Letters 39, nr 3 (5.03.2010): 278–79. http://dx.doi.org/10.1246/cl.2010.278.
Pełny tekst źródłaHeidel, Jeremy D., i Thomas Schluep. "Cyclodextrin-Containing Polymers: Versatile Platforms of Drug Delivery Materials". Journal of Drug Delivery 2012 (1.02.2012): 1–17. http://dx.doi.org/10.1155/2012/262731.
Pełny tekst źródłaNiu, Yuting, Meihua Yu, Sandy B. Hartono, Jie Yang, Hongyi Xu, Hongwei Zhang, Jun Zhang i in. "Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery". Advanced Materials 25, nr 43 (15.08.2013): 6233–37. http://dx.doi.org/10.1002/adma.201302737.
Pełny tekst źródłaLachowicz, Dorota, Agnieszka Kaczyńska, Anna Bodzon-Kulakowska, Anna Karewicz, Roma Wirecka, Michał Szuwarzyński i Szczepan Zapotoczny. "Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam". International Journal of Molecular Sciences 21, nr 24 (18.12.2020): 9664. http://dx.doi.org/10.3390/ijms21249664.
Pełny tekst źródłaLiu, Chi Hsien, i Mei Shan Cheng. "Nanoparticles Composed by Oligochitosan and Polyethylenimine for Gene Delivery". Applied Mechanics and Materials 284-287 (styczeń 2013): 418–22. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.418.
Pełny tekst źródłaGupta, Anurag, Lalit N. Goswami, Manivannan Ethirajan, Joseph Missert, K. V. R. Rao, Tymish Ohulchanskyy, Indrajit Roy, Janet Morgan, Paras N. Prasad i Ravindra K. Pandey. "Organically modified silica nanoparticles as drug delivery vehicles in photodynamic therapy". Journal of Porphyrins and Phthalocyanines 15, nr 05n06 (maj 2011): 401–11. http://dx.doi.org/10.1142/s1088424611003306.
Pełny tekst źródłaWang, Ming, John A. Zuris, Fantao Meng, Holly Rees, Shuo Sun, Pu Deng, Yong Han i in. "Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles". Proceedings of the National Academy of Sciences 113, nr 11 (29.02.2016): 2868–73. http://dx.doi.org/10.1073/pnas.1520244113.
Pełny tekst źródła