Artykuły w czasopismach na temat „Cell stretching device”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cell stretching device”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yadav, Sharda, Pradip Singha, Nhat-Khuong Nguyen, Chin Hong Ooi, Navid Kashaninejad i Nam-Trung Nguyen. "Uniaxial Cyclic Cell Stretching Device for Accelerating Cellular Studies". Micromachines 14, nr 8 (31.07.2023): 1537. http://dx.doi.org/10.3390/mi14081537.
Pełny tekst źródłaHuang, Lawrence, Pattie S. Mathieu i Brian P. Helmke. "A Stretching Device for High-Resolution Live-Cell Imaging". Annals of Biomedical Engineering 38, nr 5 (2.03.2010): 1728–40. http://dx.doi.org/10.1007/s10439-010-9968-7.
Pełny tekst źródłaShao, Yue, Xinyu Tan, Roman Novitski, Mishaal Muqaddam, Paul List, Laura Williamson, Jianping Fu i Allen P. Liu. "Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions". Review of Scientific Instruments 84, nr 11 (listopad 2013): 114304. http://dx.doi.org/10.1063/1.4832977.
Pełny tekst źródłaHAYASHI, Tatsuya, Tasuku NAKAHARA, Katsuya SATO i Kazuyuki MINAMI. "Development of cell stretching micro device having micro chamber array". Proceedings of the Conference on Information, Intelligence and Precision Equipment : IIP 2016 (2016): E—2–5. http://dx.doi.org/10.1299/jsmeiip.2016.e-2-5.
Pełny tekst źródłaKreutzer, Joose, Marlitt Viehrig, Risto-Pekka Pölönen, Feihu Zhao, Marisa Ojala, Katriina Aalto-Setälä i Pasi Kallio. "Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes". Biomechanics and Modeling in Mechanobiology 19, nr 1 (23.08.2019): 291–303. http://dx.doi.org/10.1007/s10237-019-01211-8.
Pełny tekst źródłaSato, Kae, Manami Nitta i Aiko Ogawa. "A Microfluidic Cell Stretch Device to Investigate the Effects of Stretching Stress on Artery Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension". Inventions 4, nr 1 (26.12.2018): 1. http://dx.doi.org/10.3390/inventions4010001.
Pełny tekst źródłaKamble, Harshad, Raja Vadivelu, Mathew Barton, Kseniia Boriachek, Ahmed Munaz, Sungsu Park, Muhammad Shiddiky i Nam-Trung Nguyen. "An Electromagnetically Actuated Double-Sided Cell-Stretching Device for Mechanobiology Research". Micromachines 8, nr 8 (22.08.2017): 256. http://dx.doi.org/10.3390/mi8080256.
Pełny tekst źródłaSHIMONO, Akihiro, Katsuya SATO i Kazuyuki MINAMI. "321 Fabrication of micro link mechanism for single cell stretching device". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2007.20 (2008): 119–20. http://dx.doi.org/10.1299/jsmebio.2007.20.119.
Pełny tekst źródłaMONJI, Ryo, Kazuyuki MINAMI, Yuta NAKASHIMA, Katsuya SATO i Keigo NAKANO. "716 Design and Fabrication of Highly Precise Cell Stretching Micro Device". Proceedings of Conference of Chugoku-Shikoku Branch 2011.49 (2011): 195–96. http://dx.doi.org/10.1299/jsmecs.2011.49.195.
Pełny tekst źródłaHAJI, Shigeyuki, Katsuya SATO i Kazuyuki MINAMI. "A211 Development of electro-static actuator for micro cell stretching device". Proceedings of the JSME Conference on Frontiers in Bioengineering 2007.18 (2007): 97–98. http://dx.doi.org/10.1299/jsmebiofro.2007.18.97.
Pełny tekst źródłaKamble, Harshad, Matthew J. Barton i Nam-Trung Nguyen. "Modelling of an uniaxial single-sided magnetically actuated cell-stretching device". Sensors and Actuators A: Physical 252 (grudzień 2016): 174–79. http://dx.doi.org/10.1016/j.sna.2016.10.033.
Pełny tekst źródłaTremblay, Dominique, Sophie Chagnon-Lessard, Maryam Mirzaei, Andrew E. Pelling i Michel Godin. "A microscale anisotropic biaxial cell stretching device for applications in mechanobiology". Biotechnology Letters 36, nr 3 (16.10.2013): 657–65. http://dx.doi.org/10.1007/s10529-013-1381-5.
Pełny tekst źródłaMichielin, F., E. Serena, P. Pavan i N. Elvassore. "Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model". RSC Advances 5, nr 119 (2015): 98429–39. http://dx.doi.org/10.1039/c5ra16957g.
Pełny tekst źródłaSATO, Katsuya, Akihiro SHIMONO, Satoshi KAMADA i Kazuyuki MINAMI. "Novel Cell Stretching Micro Device for High Spatial and Temporal Resolution Observation". Transactions of the Japan Society of Mechanical Engineers Series C 74, nr 746 (2008): 2535–41. http://dx.doi.org/10.1299/kikaic.74.2535.
Pełny tekst źródłaNAGASE, Hiroaki, i Eiji IWASE. "Design of Stiffness Change Measuring Device for Cultured Cell under Stretching Stimulus". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2017 (2017): 2P2—N01. http://dx.doi.org/10.1299/jsmermd.2017.2p2-n01.
Pełny tekst źródłaHuang, Yuli, i Nam-Trung Nguyen. "A polymeric cell stretching device for real-time imaging with optical microscopy". Biomedical Microdevices 15, nr 6 (19.07.2013): 1043–54. http://dx.doi.org/10.1007/s10544-013-9796-2.
Pełny tekst źródłaFallahi, Hedieh, Haotian Cha, Hossein Adelnia, Yuchen Dai, Hang Thu Ta, Sharda Yadav, Jun Zhang i Nam-Trung Nguyen. "On-demand deterministic release of particles and cells using stretchable microfluidics". Nanoscale Horizons 7, nr 4 (2022): 414–24. http://dx.doi.org/10.1039/d1nh00679g.
Pełny tekst źródłaHAYASHI, Tatsuya, Tasuku NAKAHARA, Katsuya SATO i Kazuyuki MINAMI. "Developing of micro device with cell stretching micro chamber array having uniform thickness." Proceedings of Mechanical Engineering Congress, Japan 2016 (2016): S0210106. http://dx.doi.org/10.1299/jsmemecj.2016.s0210106.
Pełny tekst źródłaKAMADA, Satoshi, Akihiro SHIMONO, Kazuyuki MINAMI i Katsuya SATO. "530 Novel cell stretching micro device for high spatial and temporal resolution observation". Proceedings of the JSME annual meeting 2008.8 (2008): 259–60. http://dx.doi.org/10.1299/jsmemecjo.2008.8.0_259.
Pełny tekst źródłaSATO, Katsuya, Satsohi KAMADA i Kazuyuki MINAMI. "2E1-4 Development of MEMS device for real time observation of stretching cell". Proceedings of the JSME Symposium on Welfare Engineering 2009 (2009): 161–62. http://dx.doi.org/10.1299/jsmewes.2009.161.
Pełny tekst źródłaThompson, Mark S., Stuart R. Abercrombie, Claus-Eric Ott, Friederike H. Bieler, Georg N. Duda i Yiannis Ventikos. "Quantification and significance of fluid shear stress field in biaxial cell stretching device". Biomechanics and Modeling in Mechanobiology 10, nr 4 (18.09.2010): 559–64. http://dx.doi.org/10.1007/s10237-010-0255-1.
Pełny tekst źródłaDavidovich, N., J. Huang i S. S. Margulies. "Reproducible uniform equibiaxial stretch of precision-cut lung slices". American Journal of Physiology-Lung Cellular and Molecular Physiology 304, nr 4 (15.02.2013): L210—L220. http://dx.doi.org/10.1152/ajplung.00224.2012.
Pełny tekst źródłaHolmes, David, Graeme Whyte, Joe Bailey, Nuria Vergara-Irigaray, Andrew Ekpenyong, Jochen Guck i Tom Duke. "Separation of blood cells with differing deformability using deterministic lateral displacement". Interface Focus 4, nr 6 (6.12.2014): 20140011. http://dx.doi.org/10.1098/rsfs.2014.0011.
Pełny tekst źródłaOnoshima, Daisuke, Naoko Kawakita, Daiki Takeshita, Hirohiko Niioka, Hiroshi Yukawa, Jun Miyake i Yoshinobu Baba. "Measurement of DNA Length Changes upon CpG Hypermethylation by Microfluidic Molecular Stretching". Cell Medicine 9, nr 1-2 (styczeń 2017): 61–66. http://dx.doi.org/10.3727/215517916x693087.
Pełny tekst źródłaTrepat, Xavier, Mireia Grabulosa, Ferranda Puig, Geoffrey N. Maksym, Daniel Navajas i Ramon Farré. "Viscoelasticity of human alveolar epithelial cells subjected to stretch". American Journal of Physiology-Lung Cellular and Molecular Physiology 287, nr 5 (listopad 2004): L1025—L1034. http://dx.doi.org/10.1152/ajplung.00077.2004.
Pełny tekst źródłaNAKANO, Keigo, Satoshi KAMADA, Katsuya SATO i Kazuyuki MINAMI. "711 Development of cell stretching micro device to observe cellular response to strain gradient field". Proceedings of Conference of Chugoku-Shikoku Branch 2009.47 (2009): 249–50. http://dx.doi.org/10.1299/jsmecs.2009.47.249.
Pełny tekst źródłaNoda, Kiyonori, i Hidehiro Oana. "Toward single-cell epigenome analysis: A microfluidic device for isolating, stretching, and imaging individual chromosomes". Sensors and Actuators B: Chemical 394 (listopad 2023): 134462. http://dx.doi.org/10.1016/j.snb.2023.134462.
Pełny tekst źródłaBenkherourou, M., C. Rochas, P. Tracqui, L. Tranqui i P. Y. Gume´ry. "Standardization of a Method for Characterizing Low-Concentration Biogels: Elastic Properties of Low-Concentration Agarose Gels". Journal of Biomechanical Engineering 121, nr 2 (1.04.1999): 184–87. http://dx.doi.org/10.1115/1.2835102.
Pełny tekst źródłaFraternali, Fernando, Narinder Singh, Ada Amendola, Gianmario Benzoni i Graeme W. Milton. "A biomimetic sliding–stretching approach to seismic isolation". Nonlinear Dynamics 106, nr 4 (2.11.2021): 3147–59. http://dx.doi.org/10.1007/s11071-021-06980-5.
Pełny tekst źródłaKim, Jaewon, Atsushi Tamura, Sachiko Tsukita i Sungsu Park. "Uniaxial stretching device for studying maturity-dependent morphological response of epithelial cell monolayers to tensile strain". Journal of Industrial and Engineering Chemistry 99 (lipiec 2021): 282–91. http://dx.doi.org/10.1016/j.jiec.2021.04.036.
Pełny tekst źródłaMONJI, Ryo, Kazuyuki MINAMI, Yuta NAKASHIMA i Katsuya SATO. "1019 Improvement of the precision of the fabrication and motion of the cell stretching micro device". Proceedings of Conference of Chugoku-Shikoku Branch 2013.51 (2013): _1019–1_—_1019–2_. http://dx.doi.org/10.1299/jsmecs.2013.51._1019-1_.
Pełny tekst źródłaWalker, Matthew, Michel Godin i Andrew E. Pelling. "Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF-β1 activation". Integrative Biology 12, nr 8 (sierpień 2020): 199–210. http://dx.doi.org/10.1093/intbio/zyaa015.
Pełny tekst źródłaGerstmair, Axel, Giorgio Fois, Siegfried Innerbichler, Paul Dietl i Edward Felder. "A device for simultaneous live cell imaging during uni-axial mechanical strain or compression". Journal of Applied Physiology 107, nr 2 (sierpień 2009): 613–20. http://dx.doi.org/10.1152/japplphysiol.00012.2009.
Pełny tekst źródłaNAKANO, Keigo, Katsuya SATO, Yuta NAKASHIMA i Kazuyuki MINAMI. "8H-05 Development of a cell stretching micro device to observe cellular response to strain gradient field". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2010.23 (2011): 151–52. http://dx.doi.org/10.1299/jsmebio.2010.23.151.
Pełny tekst źródłaAhrens, Dave, Wolfgang Rubner, Ronald Springer, Nico Hampe, Jenny Gehlen, Thomas M. Magin, Bernd Hoffmann i Rudolf Merkel. "A Combined AFM and Lateral Stretch Device Enables Microindentation Analyses of Living Cells at High Strains". Methods and Protocols 2, nr 2 (24.05.2019): 43. http://dx.doi.org/10.3390/mps2020043.
Pełny tekst źródłaHuang, Wenjing, Sheng Zhang, Belal Ahmad i Tomohiro Kawahara. "Three-Motorized-Stage Cyclic Stretching System for Cell Monitoring Based on Chamber Local Displacement Waveforms". Applied Sciences 9, nr 8 (15.04.2019): 1560. http://dx.doi.org/10.3390/app9081560.
Pełny tekst źródłaPeussa, Heidi, Joose Kreutzer, Elina Mäntylä, Antti-Juhana Mäki, Soile Nymark, Pasi Kallio i Teemu O. Ihalainen. "Pneumatic equiaxial compression device for mechanical manipulation of epithelial cell packing and physiology". PLOS ONE 17, nr 6 (3.06.2022): e0268570. http://dx.doi.org/10.1371/journal.pone.0268570.
Pełny tekst źródłaBarbee, Kenneth A. "Loading-Rate Dependent Cell Injury: A Design Criterion for Engineered Tissue Constructs". Microscopy and Microanalysis 6, S2 (sierpień 2000): 984–85. http://dx.doi.org/10.1017/s1431927600037417.
Pełny tekst źródłaGerometta, R., A. C. Zamudio, D. P. Escobar i O. A. Candia. "Volume change of the ocular lens during accommodation". American Journal of Physiology-Cell Physiology 293, nr 2 (sierpień 2007): C797—C804. http://dx.doi.org/10.1152/ajpcell.00094.2007.
Pełny tekst źródłaWeafer, Fiona M., Sharon Duffy, Ines Machado, Gillian Gunning, Pasquale Mordasini, Ellen Roche, Peter E. McHugh i Michael Gilvarry. "Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs". Journal of NeuroInterventional Surgery 11, nr 9 (19.01.2019): 891–97. http://dx.doi.org/10.1136/neurintsurg-2018-014601.
Pełny tekst źródłaShao, Lei, Bingchu Pan, Ruxia Hou, Yuan Jin i Yudong Yao. "User-friendly microfluidic manufacturing of hydrogel microspheres with sharp needle". Biofabrication 14, nr 2 (7.03.2022): 025017. http://dx.doi.org/10.1088/1758-5090/ac57a5.
Pełny tekst źródłaLi, Zhengqiang, Junfa Zheng, Di Wan i Xiaoqin Yang. "Uniaxial Static Strain Promotes Osteoblast Proliferation and Bone Matrix Formation in Distraction Osteogenesis In Vitro". BioMed Research International 2020 (13.08.2020): 1–12. http://dx.doi.org/10.1155/2020/3906426.
Pełny tekst źródłaGhareaghaji, Ali. "Piezoelectric Nanowire toward Harvesting Energy from In-Vivo Environment". Bulletin of Electrical Engineering and Informatics 4, nr 1 (1.03.2015): 59–66. http://dx.doi.org/10.11591/eei.v4i1.327.
Pełny tekst źródłaKızılkurtlu, Ahmet Akif, Tuğçe Polat, Gül Banu Aydın i Ali Akpek. "Lung on a Chip for Drug Screening and Design". Current Pharmaceutical Design 24, nr 45 (16.04.2019): 5386–96. http://dx.doi.org/10.2174/1381612825666190208122204.
Pełny tekst źródłaCOOK, A. M., J. B. ROSENZWEIG, M. DUNNING, P. FRIGOLA i K. SERRATTO. "MITIGATION OF RF GUN BREAKDOWN BY REMOVAL OF TUNING RODS IN HIGH FIELD REGIONS". International Journal of Modern Physics A 22, nr 23 (20.09.2007): 4039–50. http://dx.doi.org/10.1142/s0217751x07037615.
Pełny tekst źródłaTONELLO, SARAH, MICHELA BORGHETTI, NICOLA F. LOPOMO, MAURO SERPELLONI, EMILIO SARDINI, MARIAGRAZIA MARZIANO, MARIALAURA SERZANTI i in. "INK-JET PRINTED STRETCHABLE SENSORS FOR CELL MONITORING UNDER MECHANICAL STIMULI: A FEASIBILITY STUDY". Journal of Mechanics in Medicine and Biology 19, nr 06 (wrzesień 2019): 1950049. http://dx.doi.org/10.1142/s0219519419500490.
Pełny tekst źródłaNath, Sanatan Kr, i Pradip Kumar Kalita. "Structural, Optical and Ionic Properties of PVA Capped CuS Quantum Dots". Journal of Nano Research 77 (30.03.2023): 119–33. http://dx.doi.org/10.4028/p-i9y6sp.
Pełny tekst źródłaXue, Ziao, Li Wu, Junlin Yuan, Guodong Xu i Yuxiang Wu. "Self-Powered Biosensors for Monitoring Human Physiological Changes". Biosensors 13, nr 2 (7.02.2023): 236. http://dx.doi.org/10.3390/bios13020236.
Pełny tekst źródłaAmalina, Auliya Nur, Veinardi Suendo, Muhammad Reza, Phutri Milana, Risa Rahmawati Sunarya, Damar Rastri Adhika i Viny Veronika Tanuwijaya. "Preparation of Polyaniline Emeraldine Salt for Conducting-Polymer-Activated Counter Electrode in Dye Sensitized Solar Cell (DSSC) using Rapid-Mixing Polymerization at Various Temperature". Bulletin of Chemical Reaction Engineering & Catalysis 14, nr 3 (1.12.2019): 521. http://dx.doi.org/10.9767/bcrec.14.3.3854.521-528.
Pełny tekst źródłaHuang, Chun-Ping, Chao-Min Cheng, Hong-Lin Su i Yi-Wen Lin. "Syndecan-4 Promotes Epithelial Tumor Cells Spreading and Regulates the Turnover of PKCα Activity under Mechanical Stimulation on the Elastomeric Substrates". Cellular Physiology and Biochemistry 36, nr 4 (2015): 1291–304. http://dx.doi.org/10.1159/000430297.
Pełny tekst źródła