Rozprawy doktorskie na temat „Cell Mechanics -Stochastic Simulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 41 najlepszych rozpraw doktorskich naukowych na temat „Cell Mechanics -Stochastic Simulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Morton-Firth, Carl Jason. "Stochastic simulation of cell signalling pathways". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625063.
Pełny tekst źródłaSzekely, Tamas. "Stochastic modelling and simulation in cell biology". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.
Pełny tekst źródłaChen, Minghan. "Stochastic Modeling and Simulation of Multiscale Biochemical Systems". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90898.
Pełny tekst źródłaDoctor of Philosophy
Modeling and simulation of biochemical networks faces numerous challenges as biochemical networks are discovered with increased complexity and unknown mechanisms. With improvement in experimental techniques, biologists are able to quantify genes and proteins and their dynamics in a single cell, which calls for quantitative stochastic models, or numerical models based on probability distributions, for gene and protein networks at cellular levels that match well with the data and account for randomness. This dissertation studies a stochastic model in space and time of a bacterium’s life cycle— Caulobacter. A two-dimensional model based on a natural pattern mechanism is investigated to illustrate the changes in space and time of a key protein population. However, stochastic simulations are often complicated by the expensive computational cost for large and sophisticated biochemical networks. The hybrid stochastic simulation algorithm is a combination of traditional deterministic models, or analytical models with a single output for a given input, and stochastic models. The hybrid method can significantly improve the efficiency of stochastic simulations for biochemical networks that contain both species populations and reaction rates with widely varying magnitude. The populations of some species may become negative in the simulation under some circumstances. This dissertation investigates negative population estimates from the hybrid method, proposes several remedies, and tests them with several cases including a realistic biological system. As a key factor that affects the quality of biological models, parameter estimation in stochastic models is challenging because the amount of observed data must be large enough to obtain valid results. To optimize system parameters, the quasi-Newton algorithm for stochastic optimization (QNSTOP) was studied and applied to a stochastic (budding) yeast life cycle model by matching different distributions between simulated results and observed data. Furthermore, to reduce model complexity, this dissertation simplifies the fundamental molecular binding mechanism by the stochastic Hill equation model with optimized system parameters. Considering that many parameter vectors generate similar system dynamics and results, this dissertation proposes a general α-β-γ rule to return an acceptable parameter region of the stochastic Hill equation based on QNSTOP. Different optimization strategies are explored targeting different features of the observed data.
Staber, Brian. "Stochastic analysis, simulation and identification of hyperelastic constitutive equations". Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1042/document.
Pełny tekst źródłaThis work is concerned with the construction, generation and identification of stochastic continuum models, for heterogeneous materials exhibiting nonlinear behaviors. The main covered domains of applications are biomechanics, through the development of multiscale methods and stochastic models, in order to quantify the great variabilities exhibited by soft tissues. Two aspects are particularly highlighted. The first one is related to the uncertainty quantification in non linear mechanics, and its implications on the quantities of interest. The second aspect is concerned with the construction, the generation in high dimension and multiscale identification based on limited experimental data
Ahmadian, Mansooreh. "Hybrid Modeling and Simulation of Stochastic Effects on Biochemical Regulatory Networks". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99481.
Pełny tekst źródłaDoctor of Philosophy
Cell cycle is a process in which a growing cell replicates its DNA and divides into two cells. Progression through the cell cycle is regulated by complex interactions between networks of genes, transcripts, and proteins. These interactions inside the confined volume of a cell are subject to inherent noise. To provide a quantitative description of the cell cycle, several deterministic and stochastic models have been developed. However, deterministic models cannot capture the intrinsic noise. In addition, stochastic modeling poses the following challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the accuracy of the estimated model parameters. The goal of this dissertation is to address these challenges by developing new efficient methods for modeling and simulation of stochastic effects in biochemical networks. The results show that the proposed hybrid model that combines stochastic and deterministic modeling approaches can achieve high computational efficiency while generating accurate simulation results. Moreover, a new machine learning-based method is developed to address the parameter estimation problem in biochemical systems. The results show that the proposed method yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.
Hohenegger, Christel. "Small Scale Stochastic Dynamics For Particle Image Velocimetry Applications". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10464.
Pełny tekst źródłaCharlebois, Daniel A. "An algorithm for the stochastic simulation of gene expression and cell population dynamics". Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28755.
Pełny tekst źródłaLiu, Haipei, i 刘海培. "AFM-based experimental investigation, numerical simulation and theoretical modeling of mechanics of cell adhesion". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208565.
Pełny tekst źródłapublished_or_final_version
Mechanical Engineering
Doctoral
Doctor of Philosophy
Wang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.
Pełny tekst źródłaPh. D.
Wijanto, Florent. "Multiscale mechanics of soft tissues". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX093.
Pełny tekst źródłaFibre networks are ubiquitous structures in biological tissues, both at the macroscopic level being the main ingredient in soft tissues and at the microscopic level, as constituents of collagen structures or the cytoskeleton. The goal of this work is to propose a model based on the physical microstructure of fibre networks in order to provide an understanding of the mechanical behaviour of biological fibre networks. The current model starts from fibres sliding with respect to one another and interacting via spring-like cross-bridges. These cross-bridges can attach and detach stochastically with a load-dependent detachment rate. Compared to existing modelling approaches, this work features a dynamic sliding configuration for the interacting fibres and discrete binding sites which permit attachment on localised spaces of the fibre. The detachment of cross-bridges is based on thermal diffusion out of an energy well, following the Kramers rate theory. This theory provides a physical background to the detachment dynamics as well as a natural load dependency in the tilting of the energy landscape by the load force. The model provides two modes by which the depicted system may be driven: an imposed velocity driving, called a hard device and an imposed load driving, called a soft device. The work also provides a way of visualising the behaviour of the model by performing a stochastic simulation. The simulations provided present two algorithms, each tailored to represent the driving of the system, whether in hard or soft device, respecting the causality in each of the driving mode. Simulation results are explored via data visualisation of simulation output. These visualisation serve as an entry point into parametric investigation of the model behaviour and anchor the interpretation of the results into physical systems. In particular, the influence of binding site spacing, one of the key features of the model, is investigated. We also investigate the effects of complex loading paths (transitory, cyclic, etc.) which can be associated to the physiological loadings fibrous tissues
Barlow, Benjamin Stephen. "Poking Vesicles: What Molecular Dynamics can Reveal about Cell Mechanics". Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32240.
Pełny tekst źródłaAtwell, Kathryn. "Investigating the interplay between cellular mechanics and decision-making in the C. elegans germ line". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:a641df49-c050-460a-bda5-7231d6fa67ad.
Pełny tekst źródłaAbdennur, Nezar A. "A Framework for Individual-based Simulation of Heterogeneous Cell Populations". Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20478.
Pełny tekst źródłaAhn, Tae-Hyuk. "Computational Techniques for the Analysis of Large Scale Biological Systems". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77162.
Pełny tekst źródłaPh. D.
Rasam, Amin. "Explicit algebraic subgrid-scale stress and passive scalar flux modeling in large eddy simulation". Licentiate thesis, KTH, Linné Flow Center, FLOW, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-34453.
Pełny tekst źródłaQC 20110615
Charlebois, Daniel. "Computational Investigations of Noise-mediated Cell Population Dynamics". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30339.
Pełny tekst źródłaLi, Xiaoyi. "Computational study of fluid particles dynamics of drops, rheology of emulsions and mechanics of biological cells /". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 283 p, 2007. http://proquest.umi.com/pqdweb?did=1362531671&sid=35&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaGreen, Christopher K. "Development of Model for Solid Oxide Fuel Cell Compressive Seals". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19696.
Pełny tekst źródłaDyson, Louise. "Mathematical models of cranial neural crest cell migration". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:66955fb9-691f-4d27-ad26-39bb2b089c64.
Pełny tekst źródłaMeige, Albert, i albert@meige net. "Numerical modeling of low-pressure plasmas: applications to electric double layers". The Australian National University. Research School of Physical Sciences and Engineering, 2006. http://thesis.anu.edu.au./public/adt-ANU20070111.002333.
Pełny tekst źródłaKarunasena, H. C. P. "Numerical simulation of micro-scale morphological changes of plant food materials during drying: A meshfree approach". Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/76526/1/H.C.P.%20Karunasena%20Thesis.pdf.
Pełny tekst źródłaMagno, Alessandra Cristina Gomes. "Relação entre o volume da célula e dinâmica do ciclo celular em mamíferos". Universidade Federal de Juiz de Fora (UFJF), 2016. https://repositorio.ufjf.br/jspui/handle/ufjf/4784.
Pełny tekst źródłaRejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: on 2017-06-01T11:41:14Z (GMT)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-01T11:44:40Z No. of bitstreams: 1 alessandracristinagomesmagno.pdf: 3807060 bytes, checksum: a3775aee860af7ea06cde6b9d587ab80 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-01T11:47:06Z (GMT) No. of bitstreams: 1 alessandracristinagomesmagno.pdf: 3807060 bytes, checksum: a3775aee860af7ea06cde6b9d587ab80 (MD5)
Made available in DSpace on 2017-06-01T11:47:06Z (GMT). No. of bitstreams: 1 alessandracristinagomesmagno.pdf: 3807060 bytes, checksum: a3775aee860af7ea06cde6b9d587ab80 (MD5) Previous issue date: 2016-03-22
O objetivo principal deste trabalho é adicionar e analisar uma equação que repre senta o volume no modelo dinâmico do ciclo celular de mamíferos proposto por Gérard e Goldbeter (2011). A divisão celular ocorre quando o complexo ciclinaB/Cdk1(quínase dependente de ciclina) é totalmente degradado atingindo um valor mínimo. Neste ponto, a célula é divida em duas novas células filhas e cada uma irá conter a metade do conteúdo citoplasmático da célula mãe. As equações do modelo de base são válidas apenas se o volume celular, onde as reações ocorrem, é constante. Quando o volume celular não é constante, isto é, a taxa de variação do volume em relação ao tempo é explicitamente levada em consideração no modelo matemático, então as equações do modelo original não são mais válidas. Portanto, todas as equações foram modificadas a partir do princípio de conservação das massas para considerar um volume que varia ao longo do tempo. Por meio desta abordagem, o volume celular afeta todas as variáveis do modelo. Dois méto dos diferentes de simulação foram efetuados: determinista e estocástico. Na simulação estocástica, o volume afeta todos os parâmetros do modelo que possuem de alguma forma unidade molar, enquanto que no determinista, ele é incorporado nas equações diferen ciais. Na simulação determinista, as espécies bioquímicas podem estar em unidades de concentração, enquanto na simulação estocástica tais espécies devem ser convertidas para número de moléculas que são diretamente proporcional ao volume celular. Em um esforço para entender a influência da nova equação sobre o modelo uma análise de estabilidade foi feita. Isso esclarece como o novo parâmetro µ, fator de crescimento do volume celular, impacta na estabilidade do ciclo limite do modelo. Para encontrar a solução aproximada do modelo determinista, o método Runge Kutta de quarta ordem foi implementado. Já para o modelo estocástico, o método direto de Gillespie foi usado. Para concluir, um modelo mais preciso, em comparação ao modelo de base, foi desenvolvido ao levar em consideração a influência da taxa de variação do volume celular sobre o ciclo celular.
The main goal of this work is to add and analyse an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Gold beter (2011). The cell division occurs when the cyclinB/Cdk1 (cyclin-dependent kinase) complex is totally degraded and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cyto plasmic content of the mother cell. The equations of our base model are valid only if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation prin ciple for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were ac complished: deterministic and stochastic. In the stochastic simulation, the volume affects every model’s parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation over the model an stability analysis was performed. This elucidates how the new parameter µ, cell volume growth factor, impacts the stability of the model’s limit cycle. In order to find the approximated solution of the deterministic model, the fourth order Runge Kutta method was implemen ted. As for the stochastic model, the Gillespie’s Direct Method was used. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the rate of change of the cell volume.
Hovnanian, Jessica. "Méthode de frontières immergées pour la mécanique des fluides : application à la simulation de la nage". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00835013.
Pełny tekst źródłaMoshaei, Mohammad Hossein. "Adhesion of Rolling Cell to Deformable Substrates in Shear Flow". Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou153373230467728.
Pełny tekst źródłaLautenschlager, Willian Wagner. "Um modelo estocástico de simulação da dinâmica dos queratinócitos, melanócitos e melanomas no desenvolvimento dos tumores". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-21082017-174520/.
Pełny tekst źródłaDuring the last decades, tumor biology research with the use of new techniques in molecular biology resulted in a profusion of information that have given conditions and motivated the development of new mathematical models dedicated to analyzing various aspects of growth and proliferation of the cell population. Some of these models have been devoted to the description and analysis of the steady state of the development process of a cell population under chemical conditions that, in theory, promote the acceleration or deceleration of the growth of tumor cell population. However, these studies have not yet analyzed the temporal dynamics of growth of a tumor cell population. One of the difficulties is the establishment of the interaction between cells of multiple types that serve as the description for this dynamic. Our work fills this gap and this dissertation aims to present the model, developed by us, to simulate the growth dynamics and cellular proliferation of melanoma (cancer of low incidence but of extremely high lethality) and the results obtained through the simulations of this computational model
Tranchida, Julien. "Multiscale description of dynamical processes in magnetic media : from atomistic models to mesoscopic stochastic processes". Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4027/document.
Pełny tekst źródłaDetailed magnetic properties of solids can be regarded as the result of the interaction between three subsystems: the effective spins, that will be our focus in this thesis, the electrons and the crystalline lattice. These three subsystems exchange energy, in many ways, in particular, through relaxation processes. The nature of these processes remains extremely hard to understand, and even harder to simulate. A practical approach, for performing such simulations, involves adapting the description of random processes by Langevin to the collective dynamics of the spins, usually called the magnetization dynamics. It consists in describing the, complicated, interactions between the subsystems, by the effective interactions of the subsystem of interest, the spins, and a thermal bath, whose probability density is only of relevance. This approach allows us to interpret the results of atomistic spin dynamics simulations in appropriate macroscopic terms. After presenting the numerical implementation of this methodology, a typical study of a magnetic device based on superparamagnetic iron monolayers is presented, as an example. The results are compared to experimental data and allow us to validate the atomistic spin dynamics simulations
Perrier, Vincent. "Modélisation et simulation d'écoulements multiphasiques compressibles avec ou sans changement de phase : application à l'interaction laser-plasma". Bordeaux 1, 2007. http://www.theses.fr/2007BOR13560.
Pełny tekst źródłaThis work deals with the modelling and simulation of compressible flows. A seven equations model is obtained by homogenizing the Euler system. Fluctuation terms are modeled as relaxation terms. When the relaxation terms tend to infinity, which means that the phases are well mixed, a five equations model is obtained via an asymptotic expansion. This five equations model is strictly hyperbolic, but nonconser- vative. The discretization of this model is obtained by an asymptotic expansion of a scheme for the seven equations model. The numerical method is implemented, validated on analytic cases, and compared with experiments in the case of multiphase shocks. We are then interested in the modelling of phase transition with two equations of state. Optimization of the mixture entropy leads to the fact that three zones can be separated: one in which the pure liquid is the most stable, one in which the pure gas is the most stable, and one in which a mixture with equality of temperature, pressure and chemical potentials is the most stable. Conditions are given on the coupling of the two equations of state for ensuring that the mixture equation of state is convex, and that the system is strictly hyperbolic. In order to take into account phase transition, a vaporization wave is introduced in the solution of the Riemann problem, that is modeled as a deflagration wave. It is then proved that the usual closure, the Chapman-Jouguet closure, is wrong in general, and a correct closure in the case when both fluids have a perfect gas equation of state. Last, the solution of the Riemann problem is implemented in a multiphase code, and validated on analytic cases. In the same code, models of laser release and thermal conduction are implemented to simulate laser ablation. The results are comparable to the ones obtained with scale laws. The last chapter, fully independent, is concerned with correctors in stochastic homogenization in the case of heavy tails process
Erenay, Bulent. "Concurrent Supply Chain Network & Manufacturing Systems Design Under Uncertain Parameters". Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1459206318.
Pełny tekst źródłaPignol, Valérie. "Évolution et caractérisation de structures cellulaires bidimensionnelles expérimentales, en particulier les mousses de savon, et simulées". Phd thesis, Institut National Polytechnique de Lorraine - INPL, 1996. http://tel.archives-ouvertes.fr/tel-00717860.
Pełny tekst źródłaVilloutreix, Paul. "Aléatoire et variabilité dans l’embryogenèse animale, une approche multi-échelle". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T016/document.
Pełny tekst źródłaWe propose in this thesis to characterize variability quantitatively at various scales during embryogenesis. We use a combination of mathematical models and experimental results. In the first part, we use a small cohort of digital sea urchin embryos to construct a prototypical representation of the cell lineage, which relates individual cell features with embryo-level dynamics. This multi-level data-driven probabilistic model relies on symmetries of the embryo and known cell types, which provide a generic coarse-grained level of observation for distributions of individual cell features. The prototype is defined as the centroid of the cohort in the corresponding statistical manifold. Among several results, we show that intra-individual variability is involved in the reproducibility of the developmental process. In the second part, we consider the mechanisms sources of variability during development and their relations to evolution. Building on experimental results showing variable phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose a clarification of the various levels of biological variability using a formal analogy with quantum mechanics mathematical framework. Surprisingly, we find a formal analogy between quantum entanglement and Mendel’s idealized scheme of inheritance. In the third part, we study biological organization and its relations to developmental paths. By adapting the tools of algebraic topology, we compute invariants of the network of cellular contacts extracted from confocal microscopy images of epithelia from different species and genetic backgrounds. In particular, we show the influence of individual histories on the spatial distribution of cells in epithelial tissues
Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.
Pełny tekst źródłaDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
Pranesh, Srikara. "Development of an efficient domain decomposition algorithm for solving large stochastic mechanics problems". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5252.
Pełny tekst źródłaRobledo, Ricardo Luis. "Nonlinear Stochastic Analysis of Motorcycle Dynamics". Thesis, 2013. http://hdl.handle.net/1911/72032.
Pełny tekst źródłaMauro, Ava J. "Numerical methods and stochastic simulation algorithms for reaction-drift-diffusion systems". Thesis, 2014. https://hdl.handle.net/2144/15259.
Pełny tekst źródłaLomasko, Tatiana. "One-hit Stochastic Decline in a Mechanochemical Model of Cytoskeleton-induced Neuron Death". Thesis, 2008. http://hdl.handle.net/1807/16801.
Pełny tekst źródłaEren, Ezgi. "Stochastic Modeling and Analysis of Plant Microtubule System Characteristics". Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11085.
Pełny tekst źródłaJohn, Mathias. "Reaction Constraints for the Pi-Calculus - A Language for the Stochastic and Spatial Modeling of Cell-Biological Processes". Phd thesis, 2010. http://tel.archives-ouvertes.fr/tel-00825257.
Pełny tekst źródłaChen, Xiaoguang. "Multiscale Modeling of Amphibian Neurulation". Thesis, 2007. http://hdl.handle.net/10012/3405.
Pełny tekst źródłaMeige, Albert. "Numerical modeling of low-pressure plasmas: applications to electric double layers". Phd thesis, 2006. http://hdl.handle.net/1885/45749.
Pełny tekst źródłaGannavaram, Spandana. "Modeling and design optimization of a microfluidic chip for isolation of rare cells". Thesis, 2013. http://hdl.handle.net/1805/4442.
Pełny tekst źródłaCancer is still among those diseases that prominently contribute to the numerous deaths that are caused each year. But as technology and research is reaching new zeniths in the present times, cure or early detection of cancer is possible. The detection of rare cells can help understand the origin of many diseases. The current study deals with one such technology that is used for the capture or effective separation of these rare cells called Lab-on-a-chip microchip technology. The isolation and capture of rare cells is a problem uniquely suited to microfluidic devices, in which geometries on the cellular length scale can be engineered and a wide range of chemical functionalizations can be implemented. The performance of such devices is primarily affected by the chemical interaction between the cell and the capture surface and the mechanics of cell-surface collision and adhesion. This study focuses on the fundamental adhesion and transport mechanisms in rare cell-capture microdevices, and explores modern device design strategies in a transport context. The biorheology and engineering parameters of cell adhesion are defined; chip geometries are reviewed. Transport at the microscale, cell-wall interactions that result in cell motion across streamlines, is discussed. We have concentrated majorly on the fluid dynamics design of the chip. A simplified description of the device would be to say that the chip is at micro scale. There are posts arranged on the chip such that the arrangement will lead to a higher capture of rare cells. Blood consisting of rare cells will be passed through the chip and the posts will pose as an obstruction so that the interception and capture efficiency of the rare cells increases. The captured cells can be observed by fluorescence microscopy. As compared to previous studies of using solid microposts, we will be incorporating a new concept of cylindrical shell micropost. This type of micropost consists of a solid inner core and the annulus area is covered with a forest of silicon nanopillars. Utilization of such a design helps in increasing the interception and capture efficiency and reducing the hydrodynamic resistance between the cells and the posts. Computational analysis is done for different designs of the posts. Drag on the microposts due to fluid flow has a great significance on the capture efficiency of the chip. Also, the arrangement of the posts is important to contributing to the increase in the interception efficiency. The effects of these parameters on the efficiency in junction with other factors have been studied and quantified. The study is concluded by discussing design strategies with a focus on leveraging the underlying transport phenomena to maximize device performance.
Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems". Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30879.
Pełny tekst źródłaDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66