Gotowa bibliografia na temat „Cell Mechanics -Stochastic Simulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cell Mechanics -Stochastic Simulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cell Mechanics -Stochastic Simulation"
Hanjalić, K., i S. Kenjereš. "RANS-Based Very Large Eddy Simulation of Thermal and Magnetic Convection at Extreme Conditions". Journal of Applied Mechanics 73, nr 3 (2.10.2005): 430–40. http://dx.doi.org/10.1115/1.2150499.
Pełny tekst źródłaGao, Huajian, Jin Qian i Bin Chen. "Probing mechanical principles of focal contacts in cell–matrix adhesion with a coupled stochastic–elastic modelling framework". Journal of The Royal Society Interface 8, nr 62 (czerwiec 2011): 1217–32. http://dx.doi.org/10.1098/rsif.2011.0157.
Pełny tekst źródłaLi, Long, Wei Kang i Jizeng Wang. "Mechanical Model for Catch-Bond-Mediated Cell Adhesion in Shear Flow". International Journal of Molecular Sciences 21, nr 2 (16.01.2020): 584. http://dx.doi.org/10.3390/ijms21020584.
Pełny tekst źródłaSadikin, Indera, Djoko Suharto, Bangkit Meliana, Kemal Supelli i Abdul Arya. "Probabilistic Fracture Mechanics Analysis for Optimization of High-Pressure Vessel Inspection". Advanced Materials Research 33-37 (marzec 2008): 79–84. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.79.
Pełny tekst źródłaSun, J. Q., i C. S. Hsu. "The Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short-Time Gaussian Approximation". Journal of Applied Mechanics 57, nr 4 (1.12.1990): 1018–25. http://dx.doi.org/10.1115/1.2897620.
Pełny tekst źródłaFritzsche, Marco, Christoph Erlenkämper, Emad Moeendarbary, Guillaume Charras i Karsten Kruse. "Actin kinetics shapes cortical network structure and mechanics". Science Advances 2, nr 4 (kwiecień 2016): e1501337. http://dx.doi.org/10.1126/sciadv.1501337.
Pełny tekst źródłaBurini, D., i N. Chouhad. "A multiscale view of nonlinear diffusion in biology: From cells to tissues". Mathematical Models and Methods in Applied Sciences 29, nr 04 (kwiecień 2019): 791–823. http://dx.doi.org/10.1142/s0218202519400062.
Pełny tekst źródłaCanela-Xandri, Oriol, Samira Anbari i Javier Buceta. "TiFoSi: an efficient tool for mechanobiology simulations of epithelia". Bioinformatics 36, nr 16 (26.06.2020): 4525–26. http://dx.doi.org/10.1093/bioinformatics/btaa592.
Pełny tekst źródłaVermolen, F. J., i A. Gefen. "A semi-stochastic cell-based formalism to model the dynamics of migration of cells in colonies". Biomechanics and Modeling in Mechanobiology 11, nr 1-2 (26.03.2011): 183–95. http://dx.doi.org/10.1007/s10237-011-0302-6.
Pełny tekst źródłaChen, Jian, Xiongfei Li, Wei Li, Cong Li, Baoshan Xie, Shuowei Dai, Jian-Jun He i Yanjie Ren. "Research on energy absorption properties of open-cell copper foam for current collector of Li-ions". Materials Science-Poland 37, nr 1 (1.03.2019): 8–15. http://dx.doi.org/10.2478/msp-2019-0011.
Pełny tekst źródłaRozprawy doktorskie na temat "Cell Mechanics -Stochastic Simulation"
Morton-Firth, Carl Jason. "Stochastic simulation of cell signalling pathways". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625063.
Pełny tekst źródłaSzekely, Tamas. "Stochastic modelling and simulation in cell biology". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.
Pełny tekst źródłaChen, Minghan. "Stochastic Modeling and Simulation of Multiscale Biochemical Systems". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90898.
Pełny tekst źródłaDoctor of Philosophy
Modeling and simulation of biochemical networks faces numerous challenges as biochemical networks are discovered with increased complexity and unknown mechanisms. With improvement in experimental techniques, biologists are able to quantify genes and proteins and their dynamics in a single cell, which calls for quantitative stochastic models, or numerical models based on probability distributions, for gene and protein networks at cellular levels that match well with the data and account for randomness. This dissertation studies a stochastic model in space and time of a bacterium’s life cycle— Caulobacter. A two-dimensional model based on a natural pattern mechanism is investigated to illustrate the changes in space and time of a key protein population. However, stochastic simulations are often complicated by the expensive computational cost for large and sophisticated biochemical networks. The hybrid stochastic simulation algorithm is a combination of traditional deterministic models, or analytical models with a single output for a given input, and stochastic models. The hybrid method can significantly improve the efficiency of stochastic simulations for biochemical networks that contain both species populations and reaction rates with widely varying magnitude. The populations of some species may become negative in the simulation under some circumstances. This dissertation investigates negative population estimates from the hybrid method, proposes several remedies, and tests them with several cases including a realistic biological system. As a key factor that affects the quality of biological models, parameter estimation in stochastic models is challenging because the amount of observed data must be large enough to obtain valid results. To optimize system parameters, the quasi-Newton algorithm for stochastic optimization (QNSTOP) was studied and applied to a stochastic (budding) yeast life cycle model by matching different distributions between simulated results and observed data. Furthermore, to reduce model complexity, this dissertation simplifies the fundamental molecular binding mechanism by the stochastic Hill equation model with optimized system parameters. Considering that many parameter vectors generate similar system dynamics and results, this dissertation proposes a general α-β-γ rule to return an acceptable parameter region of the stochastic Hill equation based on QNSTOP. Different optimization strategies are explored targeting different features of the observed data.
Staber, Brian. "Stochastic analysis, simulation and identification of hyperelastic constitutive equations". Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1042/document.
Pełny tekst źródłaThis work is concerned with the construction, generation and identification of stochastic continuum models, for heterogeneous materials exhibiting nonlinear behaviors. The main covered domains of applications are biomechanics, through the development of multiscale methods and stochastic models, in order to quantify the great variabilities exhibited by soft tissues. Two aspects are particularly highlighted. The first one is related to the uncertainty quantification in non linear mechanics, and its implications on the quantities of interest. The second aspect is concerned with the construction, the generation in high dimension and multiscale identification based on limited experimental data
Ahmadian, Mansooreh. "Hybrid Modeling and Simulation of Stochastic Effects on Biochemical Regulatory Networks". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99481.
Pełny tekst źródłaDoctor of Philosophy
Cell cycle is a process in which a growing cell replicates its DNA and divides into two cells. Progression through the cell cycle is regulated by complex interactions between networks of genes, transcripts, and proteins. These interactions inside the confined volume of a cell are subject to inherent noise. To provide a quantitative description of the cell cycle, several deterministic and stochastic models have been developed. However, deterministic models cannot capture the intrinsic noise. In addition, stochastic modeling poses the following challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the accuracy of the estimated model parameters. The goal of this dissertation is to address these challenges by developing new efficient methods for modeling and simulation of stochastic effects in biochemical networks. The results show that the proposed hybrid model that combines stochastic and deterministic modeling approaches can achieve high computational efficiency while generating accurate simulation results. Moreover, a new machine learning-based method is developed to address the parameter estimation problem in biochemical systems. The results show that the proposed method yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.
Hohenegger, Christel. "Small Scale Stochastic Dynamics For Particle Image Velocimetry Applications". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10464.
Pełny tekst źródłaCharlebois, Daniel A. "An algorithm for the stochastic simulation of gene expression and cell population dynamics". Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28755.
Pełny tekst źródłaLiu, Haipei, i 刘海培. "AFM-based experimental investigation, numerical simulation and theoretical modeling of mechanics of cell adhesion". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208565.
Pełny tekst źródłapublished_or_final_version
Mechanical Engineering
Doctoral
Doctor of Philosophy
Wang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.
Pełny tekst źródłaPh. D.
Wijanto, Florent. "Multiscale mechanics of soft tissues". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX093.
Pełny tekst źródłaFibre networks are ubiquitous structures in biological tissues, both at the macroscopic level being the main ingredient in soft tissues and at the microscopic level, as constituents of collagen structures or the cytoskeleton. The goal of this work is to propose a model based on the physical microstructure of fibre networks in order to provide an understanding of the mechanical behaviour of biological fibre networks. The current model starts from fibres sliding with respect to one another and interacting via spring-like cross-bridges. These cross-bridges can attach and detach stochastically with a load-dependent detachment rate. Compared to existing modelling approaches, this work features a dynamic sliding configuration for the interacting fibres and discrete binding sites which permit attachment on localised spaces of the fibre. The detachment of cross-bridges is based on thermal diffusion out of an energy well, following the Kramers rate theory. This theory provides a physical background to the detachment dynamics as well as a natural load dependency in the tilting of the energy landscape by the load force. The model provides two modes by which the depicted system may be driven: an imposed velocity driving, called a hard device and an imposed load driving, called a soft device. The work also provides a way of visualising the behaviour of the model by performing a stochastic simulation. The simulations provided present two algorithms, each tailored to represent the driving of the system, whether in hard or soft device, respecting the causality in each of the driving mode. Simulation results are explored via data visualisation of simulation output. These visualisation serve as an entry point into parametric investigation of the model behaviour and anchor the interpretation of the results into physical systems. In particular, the influence of binding site spacing, one of the key features of the model, is investigated. We also investigate the effects of complex loading paths (transitory, cyclic, etc.) which can be associated to the physiological loadings fibrous tissues
Książki na temat "Cell Mechanics -Stochastic Simulation"
Advances in cell mechanics. Heidelberg: Springer, 2011.
Znajdź pełny tekst źródłaArnaud, Chauvière, Preziosi Luigi i Verdier Claude 1962-, red. Cell mechanics: From single scale-based models to multiscale modeling. Boca Raton: Chapman & Hall/CRC, 2009.
Znajdź pełny tekst źródłaArnaud, Chauvière, Preziosi Luigi i Verdier Claude, red. Cell mechanics: From single scale-based models to multiscale modeling. Boca Raton: Chapman & Hall/CRC, 2009.
Znajdź pełny tekst źródłaLuigi, Preziosi, i Verdier Claude, red. Cell mechanics: From single scale-based models to multiscale modeling. Boca Raton: Chapman & Hall/CRC, 2009.
Znajdź pełny tekst źródłaChauvière, Arnaud. Cell mechanics: From single scale-based models to multiscale modeling. Boca Raton: Chapman & Hall/CRC, 2009.
Znajdź pełny tekst źródłaChauvière, Arnaud. Cell mechanics: From single scale-based models to multiscale modeling. Boca Raton: Chapman & Hall/CRC, 2009.
Znajdź pełny tekst źródłaJakubowski, Jacek. Stochastyczna symulacja stateczności wyrobisk w nieciągłym masywie skalnym. Kraków: Wydawnictwa AGH, 2010.
Znajdź pełny tekst źródłaBris, Claude. Systèmes multi-échelles: Modélisation et simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.
Znajdź pełny tekst źródłaVerdier, Claude, Luigi Preziosi i Arnaud Chauvière. Cell Mechanics. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaBris, Claude Le. Systèmes multi-èchelles: Modélisation et simulation (Mathématiques et Applications). Springer, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Cell Mechanics -Stochastic Simulation"
de Simone, P., A. Ghersi i R. Mauro. "Monte Carlo Simulation of Beams on Winkler Foundation". W Computational Stochastic Mechanics, 523–32. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3692-1_44.
Pełny tekst źródłaWedig, Walter V. "Simulation and Analysis of Mechanical Systems with Parameter Fluctuation". W Nonlinear Stochastic Mechanics, 523–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84789-9_45.
Pełny tekst źródłaBielewicz, E., J. Górski i H. Walukiewicz. "Random Fields. Digital Simulation and Applications in Structural Mechanics". W Computational Stochastic Mechanics, 557–68. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3692-1_47.
Pełny tekst źródłaKareem, A., i Y. Li. "Simulation of Multi-Variate Stationary and Nonstationary Random Processes: A Recent Development". W Computational Stochastic Mechanics, 533–44. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3692-1_45.
Pełny tekst źródłaCheng, A. H.-D., K. Hackl i C. Y. Yang. "Chaos, Stochasticity, and Stability of a Nonlinear Oscillator with Control Part II: Simulation". W Computational Stochastic Mechanics, 239–52. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3692-1_21.
Pełny tekst źródłaSeya, H., H. H. M. Hwang i M. Shinozuka. "Probabilistic Seismic Response Analysis of a Steel Frame Structure Using Monte Carlo Simulation". W Computational Stochastic Mechanics, 499–510. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3692-1_42.
Pełny tekst źródłaDe López La Cruz, J., M. A. Gutiérrez i L. Koene. "Stochastic simulation of pitting corrosion". W III European Conference on Computational Mechanics, 665. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-5370-3_665.
Pełny tekst źródłaGiesa, Tristan, Graham Bratzel i Markus J. Buehler. "Modeling and Simulation of Hierarchical Protein Materials". W Nano and Cell Mechanics, 389–409. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118482568.ch15.
Pełny tekst źródłaJacobs, Christopher R., i Daniel J. Kelly. "Cell mechanics: The role of simulation". W Computational Methods in Applied Sciences, 1–14. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1254-6_1.
Pełny tekst źródłaZhu, Dong. "Numerical Simulation of Surface Contact and Mixed Lubrication — Deterministic Approach vs. Stochastic Approach". W Computational Mechanics, 394. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75999-7_194.
Pełny tekst źródłaStreszczenia konferencji na temat "Cell Mechanics -Stochastic Simulation"
Lin, Chan-Chiao, Huei Peng, Min Joong Kim i Jessy W. Grizzle. "Integrated Dynamic Simulation Model With Supervisory Control Strategy for a PEM Fuel Cell Hybrid Vehicle". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61775.
Pełny tekst źródłaPappu, Vijay, i Prosenjit Bagchi. "Capture, Deformation, Rolling and Detachment of a Cell on an Adhesive Surface in a Shear Flow". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67742.
Pełny tekst źródłaJohnston, Joel, i Aditi Chattopadhyay. "Stochastic Multiscale Modeling and Damage Progression for Composite Materials". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66566.
Pełny tekst źródłaAmirpourabasi, Arezoo, Mohammad Pourgol-Mohammad i Hanieh Niroomand-Oscuii. "Reliability Evaluation for Biomechanics Transient Stresses: Case Study of Biological Cell Vitality in Freezing Process". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39468.
Pełny tekst źródłade Carvalho, Thiago P., Hervé P. Morvan, David Hargreaves, Hatem Oun i Andrew Kennedy. "Experimental and Tomography-Based CFD Investigations of the Flow in Open Cell Metal Foams With Application to Aero Engine Separators". W ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43509.
Pełny tekst źródłaYan, Karen Chang, Aren Moy i Michael Sebok. "Modeling of Diffusive Behavior of Macromolecules Encapsulated in Electrospun Fibers". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67770.
Pełny tekst źródła"Numerical simulation of stochastic process as a model of technical object state changes". W Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-485.
Pełny tekst źródłaWielgos, Piotr, Tomasz Lipecki i Andrzej Flaga. "Simulation of stochastic wind action on transmission power lines". W COMPUTER METHODS IN MECHANICS (CMM2017): Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5019114.
Pełny tekst źródłaNaik, Pranjal, i Sayan Gupta. "Parallel Computing in Stochastic Finite Element Analysis". W 5th International Congress on Computational Mechanics and Simulation. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1139-3_446.
Pełny tekst źródłaBocchini, Paolo, Dan M. Frangopol i George Deodatis. "Computationally Efficient Simulation Techniques for Bridge Network Maintenance Optimization under Uncertainty". W 6th International Conference on Computational Stochastic Mechanics. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7619-7_p010.
Pełny tekst źródła