Gotowa bibliografia na temat „Cell Division - Stochastic Simulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cell Division - Stochastic Simulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cell Division - Stochastic Simulation"
Van Segbroeck, Sven, Ann Nowé i Tom Lenaerts. "Stochastic Simulation of the Chemoton". Artificial Life 15, nr 2 (kwiecień 2009): 213–26. http://dx.doi.org/10.1162/artl.2009.15.2.15203.
Pełny tekst źródłaCharlebois, Daniel A., Jukka Intosalmi, Dawn Fraser i Mads Kærn. "An Algorithm for the Stochastic Simulation of Gene Expression and Heterogeneous Population Dynamics". Communications in Computational Physics 9, nr 1 (styczeń 2011): 89–112. http://dx.doi.org/10.4208/cicp.280110.070510a.
Pełny tekst źródłaThomas, Philipp, i Vahid Shahrezaei. "Coordination of gene expression noise with cell size: analytical results for agent-based models of growing cell populations". Journal of The Royal Society Interface 18, nr 178 (maj 2021): 20210274. http://dx.doi.org/10.1098/rsif.2021.0274.
Pełny tekst źródłaWen, Kunwen, Lifang Huang, Qi Wang i Jianshe Yu. "Modulation of first-passage time for gene expression via asymmetric cell division". International Journal of Biomathematics 12, nr 05 (lipiec 2019): 1950052. http://dx.doi.org/10.1142/s1793524519500529.
Pełny tekst źródłaGenthon, Arthur, Reinaldo García-García i David Lacoste. "Branching processes with resetting as a model for cell division". Journal of Physics A: Mathematical and Theoretical 55, nr 7 (26.01.2022): 074001. http://dx.doi.org/10.1088/1751-8121/ac491a.
Pełny tekst źródłaWang, Qi, Lifang Huang, Kunwen Wen i Jianshe Yu. "The mean and noise of stochastic gene transcription with cell division". Mathematical Biosciences & Engineering 15, nr 5 (2018): 1255–70. http://dx.doi.org/10.3934/mbe.2018058.
Pełny tekst źródłaJi, Xiangrui, i Jie Lin. "Implications of differential size-scaling of cell-cycle regulators on cell size homeostasis". PLOS Computational Biology 19, nr 7 (28.07.2023): e1011336. http://dx.doi.org/10.1371/journal.pcbi.1011336.
Pełny tekst źródłaPham, Huy, Emile R. Shehada, Shawna Stahlheber, Kushagra Pandey i Wayne B. Hayes. "No Cell Left behind: Automated, Stochastic, Physics-Based Tracking of Every Cell in a Dense, Growing Colony". Algorithms 15, nr 2 (30.01.2022): 51. http://dx.doi.org/10.3390/a15020051.
Pełny tekst źródłaBarizien, A., M. S. Suryateja Jammalamadaka, G. Amselem i Charles N. Baroud. "Growing from a few cells: combined effects of initial stochasticity and cell-to-cell variability". Journal of The Royal Society Interface 16, nr 153 (24.04.2019): 20180935. http://dx.doi.org/10.1098/rsif.2018.0935.
Pełny tekst źródłaBaptista, Ines S. C., i Andre S. Ribeiro. "Stochastic models coupling gene expression and partitioning in cell division in Escherichia coli". Biosystems 193-194 (czerwiec 2020): 104154. http://dx.doi.org/10.1016/j.biosystems.2020.104154.
Pełny tekst źródłaRozprawy doktorskie na temat "Cell Division - Stochastic Simulation"
Morton-Firth, Carl Jason. "Stochastic simulation of cell signalling pathways". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625063.
Pełny tekst źródłaSzekely, Tamas. "Stochastic modelling and simulation in cell biology". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.
Pełny tekst źródłaChen, Minghan. "Stochastic Modeling and Simulation of Multiscale Biochemical Systems". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90898.
Pełny tekst źródłaDoctor of Philosophy
Modeling and simulation of biochemical networks faces numerous challenges as biochemical networks are discovered with increased complexity and unknown mechanisms. With improvement in experimental techniques, biologists are able to quantify genes and proteins and their dynamics in a single cell, which calls for quantitative stochastic models, or numerical models based on probability distributions, for gene and protein networks at cellular levels that match well with the data and account for randomness. This dissertation studies a stochastic model in space and time of a bacterium’s life cycle— Caulobacter. A two-dimensional model based on a natural pattern mechanism is investigated to illustrate the changes in space and time of a key protein population. However, stochastic simulations are often complicated by the expensive computational cost for large and sophisticated biochemical networks. The hybrid stochastic simulation algorithm is a combination of traditional deterministic models, or analytical models with a single output for a given input, and stochastic models. The hybrid method can significantly improve the efficiency of stochastic simulations for biochemical networks that contain both species populations and reaction rates with widely varying magnitude. The populations of some species may become negative in the simulation under some circumstances. This dissertation investigates negative population estimates from the hybrid method, proposes several remedies, and tests them with several cases including a realistic biological system. As a key factor that affects the quality of biological models, parameter estimation in stochastic models is challenging because the amount of observed data must be large enough to obtain valid results. To optimize system parameters, the quasi-Newton algorithm for stochastic optimization (QNSTOP) was studied and applied to a stochastic (budding) yeast life cycle model by matching different distributions between simulated results and observed data. Furthermore, to reduce model complexity, this dissertation simplifies the fundamental molecular binding mechanism by the stochastic Hill equation model with optimized system parameters. Considering that many parameter vectors generate similar system dynamics and results, this dissertation proposes a general α-β-γ rule to return an acceptable parameter region of the stochastic Hill equation based on QNSTOP. Different optimization strategies are explored targeting different features of the observed data.
Biehler, Eike [Verfasser], Werner [Akademischer Betreuer] Nagel i Richard [Akademischer Betreuer] Cowan. "Cell division processes in tessellations : a stochastic geometry approach / Eike Biehler. Gutachter: Werner Nagel ; Richard Cowan". Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2012. http://d-nb.info/1029294216/34.
Pełny tekst źródłaAhmadian, Mansooreh. "Hybrid Modeling and Simulation of Stochastic Effects on Biochemical Regulatory Networks". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99481.
Pełny tekst źródłaDoctor of Philosophy
Cell cycle is a process in which a growing cell replicates its DNA and divides into two cells. Progression through the cell cycle is regulated by complex interactions between networks of genes, transcripts, and proteins. These interactions inside the confined volume of a cell are subject to inherent noise. To provide a quantitative description of the cell cycle, several deterministic and stochastic models have been developed. However, deterministic models cannot capture the intrinsic noise. In addition, stochastic modeling poses the following challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the accuracy of the estimated model parameters. The goal of this dissertation is to address these challenges by developing new efficient methods for modeling and simulation of stochastic effects in biochemical networks. The results show that the proposed hybrid model that combines stochastic and deterministic modeling approaches can achieve high computational efficiency while generating accurate simulation results. Moreover, a new machine learning-based method is developed to address the parameter estimation problem in biochemical systems. The results show that the proposed method yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.
Charlebois, Daniel A. "An algorithm for the stochastic simulation of gene expression and cell population dynamics". Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28755.
Pełny tekst źródłaWang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.
Pełny tekst źródłaPh. D.
Joubaud, Maud. "Processus de Markov déterministes par morceaux branchants et problème d’arrêt optimal, application à la division cellulaire". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS031/document.
Pełny tekst źródłaPiecewise deterministic Markov processes (PDMP) form a large class of stochastic processes characterized by a deterministic evolution between random jumps. They fall into the class of hybrid processes with a discrete mode and an Euclidean component (called the state variable). Between the jumps, the continuous component evolves deterministically, then a jump occurs and a Markov kernel selects the new value of the discrete and continuous components. In this thesis, we extend the construction of PDMPs to state variables taking values in some measure spaces with infinite dimension. The aim is to model cells populations keeping track of the information about each cell. We study our measured-valued PDMP and we show their Markov property. With thoses processes, we study a optimal stopping problem. The goal of an optimal stopping problem is to find the best admissible stopping time in order to optimize some function of our process. We show that the value fonction can be recursively constructed using dynamic programming equations. We construct some $epsilon$-optimal stopping times for our optimal stopping problem. Then, we study a simple finite-dimension real-valued PDMP, the TCP process. We use Euler scheme to approximate it, and we estimate some types of errors. We illustrate the results with numerical simulations
Dao, Duc Khanh. "Modeling and analysis of neuronal networks, stochastic chemical reactions in cellular micro-domains and telomere dynamics". Paris 6, 2013. http://www.theses.fr/2013PA066513.
Pełny tekst źródłaIn this PhD, we model specific stochastic events occurring in different biological contexts. In the first part, we study three different properties of neural networks. Using a mean field facilitation-depression synaptic model, we unravel the synchronous long lasting bursting observed at various scales of neural populations. Next, we study the neuronal noise induced transition between Up& Down states. To study the oscillatory peaks of the time spent in Up state, we consider the exit problem for a class of stochastic processes in a domain with an attractor located close to a limit cycle. We construct a class of systems conjugate to the Hopf bifurcation system that we study using WKB approximation and boundary layer analysis. We finally focus on neuroglial interactions and more specifically on astrocytic potassium. Using a tri-compartment model, we simulate the potassium dynamics for different stimulation protocols and we determine how astrocytic channels can influence neurotransmission. In the second part, we focus on the threshold activation for stochastic chemical reactions in cellular micro-domains. We compute the probability and the mean first time to reach a threshold for different reactions. The methods are applied to study the mitotic spindle checkpoint and the problem of gene expression and post-transcriptional regulation. The third part is finally dedicated to the stochastic dynamics of telomere length across cell divisions. We model the dynamics of telomere length as a drift and jump process, which allows predicting the distribution of telomere length and the length of the shortest telomere
Wollrab, Viktoria. "Active gels in vivo : patterns and dynamics in cytokinetic rings and their functions in cell division". Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF027/document.
Pełny tekst źródłaActomyosin structures are involved in many cell functions. Understanding their organization and collective behavior is still challenging. We study the cytokinetic ring in mammalian cells and in fission yeasts, by orienting cells in microcavities. This allows seeing the ring in a single plane of focus. With this setup, we reveal new structures and distinct dynamics for both cellular systems. In mammalian cells we find a pattern of regular clusters of myosin and formin. The characteristics of this pattern are stable throughout closure and its formation coincides with the onset of constriction. We propose that its characteristic is an inherent property of the actomyosin network and that its formation leads to an increase in stress generation. These hypotheses are supported by our theoretical mean field model. In contrast, fission yeast rings show rotating inhomogeneities (speckles), i.e. rotations of actin, myosin, cell wall building proteins (Bgs) and other proteins. Myosin speckles dynamic is unchanged, if wall growth is inhibited. However, the inhibition of speckle motion leads to stalled closure. We propose that the ring closure is driven by the rotation of actin and myosin, which pull Bgs thereby building the septum. This model is supported by our calculations and by numerical simulations. We suggest that the transition between states of different orders and dynamics might be a way to regulate actomyosin systems in vivo
Części książek na temat "Cell Division - Stochastic Simulation"
Bansaye, Vincent, i Sylvie Méléard. "Splitting Feller Diffusion for Cell Division with Parasite Infection". W Stochastic Models for Structured Populations, 79–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21711-6_8.
Pełny tekst źródłaVitvitsky, Anton. "Cellular Automata Simulation of Bacterial Cell Growth and Division". W Designing Beauty: The Art of Cellular Automata, 121–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27270-2_19.
Pełny tekst źródłaTranquillo, Robert T., Oana Brosteanu i Wolfgang Alt. "Dynamic Morphology of Leukocytes: Statistical Analysis and a Stochastic Model for Receptor-Mediated Cell Motion and Orientation". W Biomechanics of Active Movement and Division of Cells, 437–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78975-5_15.
Pełny tekst źródłaKarni, Y., M. Goldstein i E. Bar-Ziv. "Simulation of Diffusion and Chemical Reactions with a Cell-Mixing Stochastic Model". W Springer Series in Chemical Physics, 346–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83224-6_28.
Pełny tekst źródłaBurrage, Kevin, Pamela M. Burrage, André Leier, Tatiana Marquez-Lago i Dan V. Nicolau. "Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell". W Design and Analysis of Biomolecular Circuits, 43–62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6766-4_2.
Pełny tekst źródłaBurrage, Kevin, Pamela Burrage, Andre Leier i Tatiana Marquez-Lago. "A Review of Stochastic and Delay Simulation Approaches in Both Time and Space in Computational Cell Biology". W Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology, 241–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62627-7_11.
Pełny tekst źródłaBraccini, Michele, Andrea Roli, Marco Villani i Roberto Serra. "A Comparison Between Threshold Ergodic Sets and Stochastic Simulation of Boolean Networks for Modelling Cell Differentiation". W Communications in Computer and Information Science, 116–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78658-2_9.
Pełny tekst źródła"Stochastic Simulation of Cell Signaling Pathways". W Computational Modeling of Genetic and Biochemical Networks. The MIT Press, 2001. http://dx.doi.org/10.7551/mitpress/2018.003.0014.
Pełny tekst źródłaZhang, Xingyi, Yunyun Niu, Linqiang Pan i Mario J. Pérez-Jiménez. "Linear Time Solution to Prime Factorization by Tissue P Systems with Cell Division". W Natural Computing for Simulation and Knowledge Discovery, 207–20. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4253-9.ch014.
Pełny tekst źródłaDoumic, Marie, i Marc Hoffmann. "Individual and Population Approaches for Calibrating Division Rates in Population Dynamics: Application to the Bacterial Cell Cycle". W Modeling and Simulation for Collective Dynamics, 1–81. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811266140_0001.
Pełny tekst źródłaStreszczenia konferencji na temat "Cell Division - Stochastic Simulation"
Aguinaga, Sylvain, Olivier Simonin, Jacques Bore´e i Vincent Herbert. "A Lagrangian Stochastic Model for Droplet Deposition Simulations in Connection With Wall Function Approaches". W ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78126.
Pełny tekst źródłaPappu, Vijay, i Prosenjit Bagchi. "3D Computational Modeling and Simulation of Cell Motion on Adhesive Surfaces in Shear Flow". W ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55113.
Pełny tekst źródłaSikarwar, Vandna, Vijayshri Chaurasia, J. S. Yadav i Yashwant Kurmi. "Stochastic model analysis for Hes1/MiR-9 brain cell division system". W 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE). IEEE, 2017. http://dx.doi.org/10.1109/rise.2017.8378208.
Pełny tekst źródłaYi, Wenlong, Yinglong Wang, Yingzhao Jiang, Hongyu Jiang i Jun Yang. "Simulation of Plant Cell Division Based on Combinatorial Topology". W 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE, 2021. http://dx.doi.org/10.1109/elconrus51938.2021.9396716.
Pełny tekst źródłaSchulz, Hans-Jörg, Adelinde M. Uhrmacher i Heidrun Schumann. "Visual analytics for stochastic simulation in cell biology". W the 11th International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2024288.2024345.
Pełny tekst źródłaSoyhan, Hakan Serhad, Terese Løvås i Fabian Mauss. "A Stochastic Simulation of an HCCI Engine Using an Automatically Reduced Mechanism". W ASME 2001 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-ice-416.
Pełny tekst źródłaManninen, Tiina, Eeva Makiraatikka, Antti Ylipaa, Antti Pettinen, Kalle Leinonen i Marja-Leena Linne. "Discrete stochastic simulation of cell signaling: comparison of computational tools". W Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260023.
Pełny tekst źródłaManninen, Tiina, Eeva Makiraatikka, Antti Ylipaa, Antti Pettinen, Kalle Leinonen i Marja-Leena Linne. "Discrete stochastic simulation of cell signaling: comparison of computational tools". W Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397829.
Pełny tekst źródłaPeng, Zhangli, Xuejin Li, George Karniadakis i Ming Dao. "Poster: Multiscale simulation of red blood cell tethering in a capillary". W 67th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2014. http://dx.doi.org/10.1103/aps.dfd.2014.gfm.p0039.
Pełny tekst źródłaWilmer, Brady M., i William F. Northrop. "Simulation of Turbulent Combustion in Gasoline Direct Injection Spark-Ignited Engines Using a Stochastic Reactor Model". W ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icef2021-66622.
Pełny tekst źródła