Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Cell-based immunotherapy.

Artykuły w czasopismach na temat „Cell-based immunotherapy”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cell-based immunotherapy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Osada, Takuya, Timothy M. Clay, Christopher Y. Woo, Michael A. Morse i H. Kim Lyerly. "Dendritic Cell-Based Immunotherapy". International Reviews of Immunology 25, nr 5-6 (styczeń 2006): 377–413. http://dx.doi.org/10.1080/08830180600992456.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sabado, Rachel L., Sreekumar Balan i Nina Bhardwaj. "Dendritic cell-based immunotherapy". Cell Research 27, nr 1 (27.12.2016): 74–95. http://dx.doi.org/10.1038/cr.2016.157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Razzak, Mina. "New cell-based immunotherapy?" Nature Reviews Urology 9, nr 3 (21.02.2012): 122. http://dx.doi.org/10.1038/nrurol.2012.18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chang, Kiyuk, Jie-Young Song i Dae-Seog Lim. "Tolerogenic dendritic cell-based immunotherapy". Oncotarget 8, nr 53 (17.10.2017): 90630–31. http://dx.doi.org/10.18632/oncotarget.21867.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Golán, Irene, Laura Rodríguez de la Fuente i Jose Costoya. "NK Cell-Based Glioblastoma Immunotherapy". Cancers 10, nr 12 (18.12.2018): 522. http://dx.doi.org/10.3390/cancers10120522.

Pełny tekst źródła
Streszczenie:
Glioblastoma (GB) is the most aggressive and most common malignant primary brain tumor diagnosed in adults. GB shows a poor prognosis and, unfortunately, current therapies are unable to improve its clinical outcome, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor mass and its high capacity for invading healthy tissues. Moreover, the glioblastoma microenvironment is capable of suppressing the action of the immune system through several mechanisms such as recruitment of cell modulators. Development of new therapies that avoid this immune evasion could improve the response to the current treatments for this pathology. Natural Killer (NK) cells are cellular components of the immune system more difficult to deceive by tumor cells and with greater cytotoxic activity. Their use in immunotherapy gains strength because they are a less toxic alternative to existing therapy, but the current research focuses on mimicking the NK attack strategy. Here, we summarize the most recent studies regarding molecular mechanisms involved in the GB and immune cells interaction and highlight the relevance of NK cells in the new therapeutic challenges.
Style APA, Harvard, Vancouver, ISO itp.
6

Wennhold, Kerstin, Alexander Shimabukuro-Vornhagen i Michael von Bergwelt-Baildon. "B Cell-Based Cancer Immunotherapy". Transfusion Medicine and Hemotherapy 46, nr 1 (2019): 36–46. http://dx.doi.org/10.1159/000496166.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Urbonas, Vincas, Giedre Smailyte, Greta V. Urbonaite, Audrius Dulskas, Neringa Burokiene i Vytautas Kasiulevicius. "Natural killer cell-based immunotherapy". Melanoma Research 29, nr 2 (kwiecień 2019): 208–11. http://dx.doi.org/10.1097/cmr.0000000000000552.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kadowaki, Norimitsu, i Toshio Kitawaki. "V. Dendritic Cell-based Immunotherapy". Nihon Naika Gakkai Zasshi 108, nr 7 (10.07.2019): 1391–96. http://dx.doi.org/10.2169/naika.108.1391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Stagg, J., i M. J. Smyth. "NK cell-based cancer immunotherapy". Drug News & Perspectives 20, nr 3 (2007): 155. http://dx.doi.org/10.1358/dnp.2007.20.3.1092096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Buckler, Lee. "Rise of Cell-Based Immunotherapy". Genetic Engineering & Biotechnology News 33, nr 5 (marzec 2013): 12–13. http://dx.doi.org/10.1089/gen.33.5.05.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

ENGLEMAN, E. "Dendritic cell-based cancer immunotherapy". Seminars in Oncology 30 (czerwiec 2003): 23–29. http://dx.doi.org/10.1016/s0093-7754(03)00229-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Zhang, Hao, Li Yang, Tingting Wang i Zhen Li. "NK cell-based tumor immunotherapy". Bioactive Materials 31 (styczeń 2024): 63–86. http://dx.doi.org/10.1016/j.bioactmat.2023.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Song, Min-Seon, Ji-Hee Nam, Kyung-Eun Noh i Dae-Seog Lim. "Dendritic Cell-Based Immunotherapy: The Importance of Dendritic Cell Migration". Journal of Immunology Research 2024 (8.04.2024): 1–11. http://dx.doi.org/10.1155/2024/7827246.

Pełny tekst źródła
Streszczenie:
Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%–10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.
Style APA, Harvard, Vancouver, ISO itp.
14

Terrén, Iñigo, Ane Orrantia, Idoia Mikelez-Alonso, Joana Vitallé, Olatz Zenarruzabeitia i Francisco Borrego. "NK Cell-Based Immunotherapy in Renal Cell Carcinoma". Cancers 12, nr 2 (29.01.2020): 316. http://dx.doi.org/10.3390/cancers12020316.

Pełny tekst źródła
Streszczenie:
Natural killer (NK) cells are cytotoxic lymphocytes that are able to kill tumor cells without prior sensitization. It has been shown that NK cells play a pivotal role in a variety of cancers, highlighting their relevance in tumor immunosurveillance. NK cell infiltration has been reported in renal cell carcinoma (RCC), the most frequent kidney cancer in adults, and their presence has been associated with patients’ survival. However, the role of NK cells in this disease is not yet fully understood. In this review, we summarize the biology of NK cells and the mechanisms through which they are able to recognize and kill tumor cells. Furthermore, we discuss the role that NK cells play in renal cell carcinoma, and review current strategies that are being used to boost and exploit their cytotoxic capabilities.
Style APA, Harvard, Vancouver, ISO itp.
15

Ghoneim, Hazem E., Anthony E. Zamora, Paul G. Thomas i Ben A. Youngblood. "Cell-Intrinsic Barriers of T Cell-Based Immunotherapy". Trends in Molecular Medicine 22, nr 12 (grudzień 2016): 1000–1011. http://dx.doi.org/10.1016/j.molmed.2016.10.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Gitlitz, Barbara J., Robert A. Figlin, Allan J. Pantuck i Arie S. Belldegrun. "Dendritic cell-based immunotherapy of renal cell carcinoma". Current Urology Reports 2, nr 1 (luty 2001): 46–52. http://dx.doi.org/10.1007/s11934-001-0025-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Janikashvili, Nona, Nicolas Larmonier i Emmanuel Katsanis. "Personalized dendritic cell-based tumor immunotherapy". Immunotherapy 2, nr 1 (styczeń 2010): 57–68. http://dx.doi.org/10.2217/imt.09.78.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Charles, Ronald, Lina Lu, Shiguang Qian i John J. Fung. "Stromal cell-based immunotherapy in transplantation". Immunotherapy 3, nr 12 (grudzień 2011): 1471–85. http://dx.doi.org/10.2217/imt.11.132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Cornelissen, Robin, Lysanne A. Lievense, Marlies E. Heuvers, Alexander P. Maat, Rudi W. Hendriks, Henk C. Hoogsteden, Joost P. Hegmans i Joachim G. Aerts. "Dendritic cell-based immunotherapy in mesothelioma". Immunotherapy 4, nr 10 (październik 2012): 1011–22. http://dx.doi.org/10.2217/imt.12.108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Zitvogel, Laurence, Eric Angevin i Thomas Tursz. "Dendritic cell-based immunotherapy of cancer". Annals of Oncology 11 (2000): 199–206. http://dx.doi.org/10.1093/annonc/11.suppl_3.199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Schaar, Bruce, Venkatesh Krishnan, Supreeti Tallapragada i Oliver Dorigo. "Cell-based immunotherapy in gynecologic malignancies". Current Opinion in Obstetrics and Gynecology 30, nr 1 (luty 2018): 23–30. http://dx.doi.org/10.1097/gco.0000000000000433.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Schaar, Bruce, Venkatesh Krishnan, Supreeti Tallapragada, Anita Chanana i Oliver Dorigo. "Cell-based immunotherapy in gynecologic malignancies". Current Opinion in Obstetrics and Gynecology 31, nr 1 (luty 2019): 43–48. http://dx.doi.org/10.1097/gco.0000000000000518.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Fang, Fang, Weihua Xiao i Zhigang Tian. "NK cell-based immunotherapy for cancer". Seminars in Immunology 31 (czerwiec 2017): 37–54. http://dx.doi.org/10.1016/j.smim.2017.07.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Tran, Tuan Hiep, Thi Thu Phuong Tran, Hanh Thuy Nguyen, Cao Dai Phung, Jee-Heon Jeong, Martina H. Stenzel, Sung Giu Jin, Chul Soon Yong, Duy Hieu Truong i Jong Oh Kim. "Nanoparticles for dendritic cell-based immunotherapy". International Journal of Pharmaceutics 542, nr 1-2 (maj 2018): 253–65. http://dx.doi.org/10.1016/j.ijpharm.2018.03.029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kamat, Kalika, Venkatesh Krishnan, Jonathan S. Berek i Oliver Dorigo. "Cell-based immunotherapy in gynecologic malignancies". Current Opinion in Obstetrics & Gynecology 33, nr 1 (3.12.2020): 13–18. http://dx.doi.org/10.1097/gco.0000000000000676.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lo Presti, Elena, Anna Maria Corsale, Francesco Dieli i Serena Meraviglia. "γδ cell-based immunotherapy for cancer". Expert Opinion on Biological Therapy 19, nr 9 (23.06.2019): 887–95. http://dx.doi.org/10.1080/14712598.2019.1634050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Höltl, Lorenz, Claudia Zelle-Rieser, Hubert Gander, Christine Papesh, Reinhold Ramoner, Georg Bartsch i Martin Thurnher. "Dendritic cell-based immunotherapy for metastatic renal cell cancer". European Urology Supplements 1, nr 1 (styczeń 2002): 110. http://dx.doi.org/10.1016/s1569-9056(02)80423-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Fang, Fang, Wei Wang, Minhua Chen, Zhigang Tian i Weihua Xiao. "Technical advances in NK cell-based cellular immunotherapy". Cancer Biology & Medicine 16, nr 4 (1.11.2019): 647–54. http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0187.

Pełny tekst źródła
Streszczenie:
Natural killer (NK) cells represent a promising future for tumor immunotherapy because of their unique biological functions and characteristics. This review focuses on technical advances in NK cell-based cellular immunotherapy and summarizes the developments of recent years in cell sources, genetic modification, manufacturing systems, clinical programs, and outcomes. Future prospects and challenges in NK cell immunotherapy are also discussed, including off-the-shelf NK cell exploitation, automatic and closed manufacturing systems, cryopreservation, and therapies involving regulatory checkpoints.
Style APA, Harvard, Vancouver, ISO itp.
29

Ulivieri, Cristina, i Cosima T. Baldari. "T-cell-based immunotherapy of autoimmune diseases". Expert Review of Vaccines 12, nr 3 (marzec 2013): 297–310. http://dx.doi.org/10.1586/erv.12.146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

A. Rabinovich, Brian, i Caius G. Radu. "Imaging Adoptive Cell Transfer Based Cancer Immunotherapy". Current Pharmaceutical Biotechnology 11, nr 6 (1.09.2010): 672–84. http://dx.doi.org/10.2174/138920110792246528.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Salgaller, M. L., B. A. Tjoa, P. A. Lodge, H. Ragde, G. Kenny, A. Boynton i G. P. Murphy. "Dendritic Cell-Based Immunotherapy of Prostate Cancer". Critical Reviews™ in Immunology 18, nr 1-2 (1998): 109–19. http://dx.doi.org/10.1615/critrevimmunol.v18.i1-2.120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Della Chiesa, Mariella, Chiara Setti, Chiara Giordano, Valentina Obino, Marco Greppi, Silvia Pesce, Emanuela Marcenaro i in. "NK Cell-Based Immunotherapy in Colorectal Cancer". Vaccines 10, nr 7 (28.06.2022): 1033. http://dx.doi.org/10.3390/vaccines10071033.

Pełny tekst źródła
Streszczenie:
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Style APA, Harvard, Vancouver, ISO itp.
33

Zhou, Yang, Tiffany Husman, Xinjian Cen, Tasha Tsao, James Brown, Aarushi Bajpai, Miao Li, Kuangyi Zhou i Lili Yang. "Interleukin 15 in Cell-Based Cancer Immunotherapy". International Journal of Molecular Sciences 23, nr 13 (30.06.2022): 7311. http://dx.doi.org/10.3390/ijms23137311.

Pełny tekst źródła
Streszczenie:
Cell-based cancer immunotherapy, such as chimeric antigen receptor (CAR) engineered T and natural killer (NK) cell therapies, has become a revolutionary new pillar in cancer treatment. Interleukin 15 (IL-15), a potent immunostimulatory cytokine that potentiates T and NK cell immune responses, has demonstrated the reliability and potency to potentially improve the therapeutic efficacy of current cell therapy. Structurally similar to interleukin 2 (IL-2), IL-15 supports the persistence of CD8+ memory T cells while inhibiting IL-2-induced T cell death that better maintains long-term anti-tumor immunity. In this review, we describe the biology of IL-15, studies on administrating IL-15 and/or its derivatives as immunotherapeutic agents, and IL-15-armored immune cells in adoptive cell therapy. We also discuss the advantages and challenges of incorporating IL-15 in cell-based immunotherapy and provide directions for future investigation.
Style APA, Harvard, Vancouver, ISO itp.
34

Tjoa, B. A., P. A. Lodge, M. L. Salgaller, A. L. Boynton i G. P. Murphy. "Dendritic cell-based immunotherapy for prostate cancer". CA: A Cancer Journal for Clinicians 49, nr 2 (1.03.1999): 117–28. http://dx.doi.org/10.3322/canjclin.49.2.117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Li, Yingrui, Kang Dong, Xueke Fan, Jun Xie, Miao Wang, Songtao Fu i Qin Li. "DNT Cell-based Immunotherapy: Progress and Applications". Journal of Cancer 11, nr 13 (2020): 3717–24. http://dx.doi.org/10.7150/jca.39717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Sivori, Simona, Raffaella Meazza, Concetta Quintarelli, Simona Carlomagno, Mariella Della Chiesa, Michela Falco, Lorenzo Moretta, Franco Locatelli i Daniela Pende. "NK Cell-Based Immunotherapy for Hematological Malignancies". Journal of Clinical Medicine 8, nr 10 (16.10.2019): 1702. http://dx.doi.org/10.3390/jcm8101702.

Pełny tekst źródła
Streszczenie:
Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an “off-the-shelf” NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.
Style APA, Harvard, Vancouver, ISO itp.
37

Coosemans, An, Ignace Vergote i Stefaan W. Van Gool. "Dendritic cell-based immunotherapy in ovarian cancer". OncoImmunology 2, nr 12 (grudzień 2013): e27059. http://dx.doi.org/10.4161/onci.27059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Akasaki, Yasuharu, Keith L. Black i John S. Yu. "Dendritic cell-based immunotherapy for malignant gliomas". Expert Review of Neurotherapeutics 5, nr 4 (lipiec 2005): 497–508. http://dx.doi.org/10.1586/14737175.5.4.497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zhong, Hua, Michael R. Shurin i Baohui Han. "Optimizing dendritic cell-based immunotherapy for cancer". Expert Review of Vaccines 6, nr 3 (czerwiec 2007): 333–45. http://dx.doi.org/10.1586/14760584.6.3.333.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Schott, Matthias, Werner A. Scherbaum i Jochen Seissler. "Dendritic Cell-Based Immunotherapy in Thyroid Malignancies". Current Drug Targets - Immune, Endocrine & Metabolic Disorders 4, nr 3 (1.09.2004): 245–51. http://dx.doi.org/10.2174/1568008043339820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Lorenzo-Herrero, Seila, Alejandro López-Soto, Christian Sordo-Bahamonde, Ana Gonzalez-Rodriguez, Massimo Vitale i Segundo Gonzalez. "NK Cell-Based Immunotherapy in Cancer Metastasis". Cancers 11, nr 1 (28.12.2018): 29. http://dx.doi.org/10.3390/cancers11010029.

Pełny tekst źródła
Streszczenie:
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Style APA, Harvard, Vancouver, ISO itp.
42

Liu, Gang, Magdalena Swierczewska, Gang Niu, Xiaoming Zhang i Xiaoyuan Chen. "Molecular imaging of cell-based cancer immunotherapy". Molecular BioSystems 7, nr 4 (2011): 993. http://dx.doi.org/10.1039/c0mb00198h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kriegsmann, Katharina, Mark Kriegsmann, Martin Cremer, Michael Schmitt, Peter Dreger, Hartmut Goldschmidt, Carsten Müller-Tidow i Michael Hundemer. "Cell-based immunotherapy approaches for multiple myeloma". British Journal of Cancer 120, nr 1 (6.12.2018): 38–44. http://dx.doi.org/10.1038/s41416-018-0346-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Cheng, Min, Yongyan Chen, Weihua Xiao, Rui Sun i Zhigang Tian. "NK cell-based immunotherapy for malignant diseases". Cellular & Molecular Immunology 10, nr 3 (22.04.2013): 230–52. http://dx.doi.org/10.1038/cmi.2013.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Motohashi, Shinichiro, i Toshinori Nakayama. "Translational research of NKT cell-based immunotherapy". Folia Pharmacologica Japonica 136, nr 6 (2010): 344–47. http://dx.doi.org/10.1254/fpj.136.344.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Jung, Nam-Chul, Jun-Ho Lee, Kwang-Hoe Chung, Yi Sub Kwak i Dae-Seog Lim. "Dendritic Cell-Based Immunotherapy for Solid Tumors". Translational Oncology 11, nr 3 (czerwiec 2018): 686–90. http://dx.doi.org/10.1016/j.tranon.2018.03.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Felzmann, Thomas. "Dendritic cell based immunotherapy in solid tumours". European Journal of Molecular & Clinical Medicine 1 (7.09.2017): 1. http://dx.doi.org/10.1016/j.nhccr.2017.06.135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Ray, Moumita, Yi-Wei Lee, Joseph Hardie, Rubul Mout, Gulen Yeşilbag Tonga, Michelle E. Farkas i Vincent M. Rotello. "CRISPRed Macrophages for Cell-Based Cancer Immunotherapy". Bioconjugate Chemistry 29, nr 2 (22.01.2018): 445–50. http://dx.doi.org/10.1021/acs.bioconjchem.7b00768.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Jenne, Lars, Gerold Schuler i Alexander Steinkasserer. "Viral vectors for dendritic cell-based immunotherapy". Trends in Immunology 22, nr 2 (luty 2001): 102–7. http://dx.doi.org/10.1016/s1471-4906(00)01813-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chakravarti, Deboki, i Wilson W. Wong. "Synthetic biology in cell-based cancer immunotherapy". Trends in Biotechnology 33, nr 8 (sierpień 2015): 449–61. http://dx.doi.org/10.1016/j.tibtech.2015.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii