Artykuły w czasopismach na temat „CdO Doped Nanocomposite Electrolytes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 29 najlepszych artykułów w czasopismach naukowych na temat „CdO Doped Nanocomposite Electrolytes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Karmakar, A., i A. Ghosh. "Ac conductivity and relaxation in CdO doped poly ethylene oxide-LiI nanocomposite electrolyte". Journal of Applied Physics 110, nr 3 (sierpień 2011): 034101. http://dx.doi.org/10.1063/1.3610503.
Pełny tekst źródłaJoyce Stella, R., G. Thirumala Rao, B. Babu, V. Pushpa Manjari, Ch Venkata Reddy, Jaesool Shim i R. V. S. S. N. Ravikumar. "A facile synthesis and spectral characterization of Cu2+ doped CdO/ZnS nanocomposite". Journal of Magnetism and Magnetic Materials 384 (czerwiec 2015): 6–12. http://dx.doi.org/10.1016/j.jmmm.2015.02.010.
Pełny tekst źródłaRafique, Asia, Rizwan Raza, Nadeem Akram, M. Kaleem Ullah, Amjad Ali, Muneeb Irshad, Khurram Siraj, M. Ajmal Khan, Bin Zhu i Richard Dawson. "Significance enhancement in the conductivity of core shell nanocomposite electrolytes". RSC Advances 5, nr 105 (2015): 86322–29. http://dx.doi.org/10.1039/c5ra16763a.
Pełny tekst źródłaRaza, Rizwan, Xiaodi Wang, Ying Ma i Bin Zhu. "Study on calcium and samarium co-doped ceria based nanocomposite electrolytes". Journal of Power Sources 195, nr 19 (październik 2010): 6491–95. http://dx.doi.org/10.1016/j.jpowsour.2010.04.031.
Pełny tekst źródłaKundu, Ranadip, Debasish Roy i Sanjib Bhattacharya. "Microstructure, electrical conductivity and modulus spectra of CdI2 doped nanocomposite-electrolytes". Physica B: Condensed Matter 507 (luty 2017): 107–13. http://dx.doi.org/10.1016/j.physb.2016.11.036.
Pełny tekst źródłaJaiswal, Nandini, Shail Upadhyay, Devendra Kumar i Om Parkash. "Ionic conduction in Mg2+ and Sr2+ co-doped ceria/carbonates nanocomposite electrolytes". International Journal of Hydrogen Energy 40, nr 8 (marzec 2015): 3313–20. http://dx.doi.org/10.1016/j.ijhydene.2015.01.002.
Pełny tekst źródłaRam, Rakesh, i Sanjib Bhattacharya. "Mixed ionic-electronic transport in Na2O doped glassy electrolytes: Promising candidate for new generation sodium ion battery electrolytes". Journal of Applied Physics 133, nr 14 (14.04.2023): 145101. http://dx.doi.org/10.1063/5.0145894.
Pełny tekst źródłaAgrawal, S. L., i Neelesh Rai. "DMA and Conductivity Studies in PVA:NH4SCN:DMSO:MWNT Nanocomposite Polymer Dried Gel Electrolytes". Journal of Nanomaterials 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/435625.
Pełny tekst źródłaSuchikova, Yana, Sergii Kovachov, Ihor Bohdanov, Elena Popova, Aleksandra Moskina i Anatoli Popov. "Characterization of CdxTeyOz/CdS/ZnO Heterostructures Synthesized by the SILAR Method". Coatings 13, nr 3 (17.03.2023): 639. http://dx.doi.org/10.3390/coatings13030639.
Pełny tekst źródłaYang, Ben, Yin She, Changgeng Zhang, Shuai Kang, Jin Zhou i Wei Hu. "Nitrogen Doped Intercalation TiO2/TiN/Ti3C2Tx Nanocomposite Electrodes with Enhanced Pseudocapacitance". Nanomaterials 10, nr 2 (18.02.2020): 345. http://dx.doi.org/10.3390/nano10020345.
Pełny tekst źródłaAlvi, Farah, Punya A. Basnayaka, Manoj K. Ram, Humberto Gomez, Elias Stefanako, Yogi Goswami i Ashok Kumar. "Graphene-Polythiophene Nanocomposite as Novel Supercapacitor Electrode Material". Journal of New Materials for Electrochemical Systems 15, nr 2 (22.12.2011): 89–95. http://dx.doi.org/10.14447/jnmes.v15i2.76.
Pełny tekst źródłaSharif, Farbod, i Edward P. L. Roberts. "Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites". Catalysts 10, nr 2 (21.02.2020): 263. http://dx.doi.org/10.3390/catal10020263.
Pełny tekst źródłaBhattacharya, S., i A. Ghosh. "Effect of ZnO Nanoparticles on the Structure and Ionic Relaxation of Poly(ethylene oxide)-LiI Polymer Electrolyte Nanocomposites". Journal of Nanoscience and Nanotechnology 8, nr 4 (1.04.2008): 1922–26. http://dx.doi.org/10.1166/jnn.2008.18257.
Pełny tekst źródłaMendoza Villa, Ana Lucia, Jose Alonso Diaz-Guillen, Antonio Fernández-Fuentes i Karinjilottu Padmadas Padmasree. "Synthesis and Characterization Studies of Ca2+ and Y3+ Co-Doped Ceria-Na2CO3 Nanocomposite Electrolytes for Low Temperature SOFCs". ECS Transactions 94, nr 1 (25.10.2019): 63–71. http://dx.doi.org/10.1149/09401.0063ecst.
Pełny tekst źródłaCaliman, Willian Robert, Franciani Cassia Sentanin, Rodrigo Cesar Sabadini, Jose Pedro Donoso, Claudio Jose Magon i Agnieszka Pawlicka. "Improved Conductivity in Gellan Gum and Montmorillonite Nanocomposites Electrolytes". Molecules 27, nr 24 (9.12.2022): 8721. http://dx.doi.org/10.3390/molecules27248721.
Pełny tekst źródłaFatema, Kamrun Nahar, Chang-Sung Lim, Yin Liu, Kwang-Youn Cho, Chong-Hun Jung i Won-Chun Oh. "3D Modeling of Silver Doped ZrO2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects". Nanomaterials 12, nr 2 (7.01.2022): 193. http://dx.doi.org/10.3390/nano12020193.
Pełny tekst źródłaAnelli, Simone, Luis Moreno-Sanabria, Federico Baiutti, Marc Torrell i Albert Tarancón. "Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds". Nanomaterials 11, nr 12 (18.12.2021): 3435. http://dx.doi.org/10.3390/nano11123435.
Pełny tekst źródłaAl-Attar, Abeer Farouk Abbas. "Effect of Mechanical Alloying on Structural and Electrical Properties of (P2O5)(x)-(Y2O3)(0.03)-(ZrO2)(0.97) Electrolyte". Key Engineering Materials 900 (20.09.2021): 155–62. http://dx.doi.org/10.4028/www.scientific.net/kem.900.155.
Pełny tekst źródłaSingh, C. P., P. K. Shukla i S. L. Agrawal. "Role of Multiferroic Filler on the AC Response of Bi 1‐ x Ba x FeO 3 doped PVA:NH 4 CH 3 COO Nanocomposite Gel Polymer Electrolytes". Macromolecular Symposia 388, nr 1 (grudzień 2019): 1900032. http://dx.doi.org/10.1002/masy.201900032.
Pełny tekst źródłaVenugopal, R., K. Sudhakar, N. Narsimlu i CH Srinivas. "Structural, Optical, Electrical and Discharge Characteristics of PVA-ZnS Nanocomposite Polymer Electrolyte−Zn2+ Ion Conduction for Solid State Battery Applications". Asian Journal of Chemistry 35, nr 7 (2023): 1707–13. http://dx.doi.org/10.14233/ajchem.2023.27952.
Pełny tekst źródłaKumar, Niraj, Viresh Kumar i H. S. Panda. "Enhanced tortuosity for electrolytes in microwave irradiated self-organized carbon-doped Ni/Co hydroxide nanocomposite electrodes with higher Ni/Co atomic ratio and rate capability for an asymmetric supercapacitor". Nanotechnology 28, nr 44 (4.10.2017): 445405. http://dx.doi.org/10.1088/1361-6528/aa854f.
Pełny tekst źródłaPinchart, Camille, Jean-Marc Zanotti, Quentin Berrod, Patrick Judeinstein, Raphael Ramos i Nino Modesto. "Lithium Metal Polymer Batteries: Towards Operation at Ambient Temperature". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 426. http://dx.doi.org/10.1149/ma2022-024426mtgabs.
Pełny tekst źródłaRehman, Zohaib Ur, Ghazanfar Abbas, M. Ashfaq Ahmad, Rizwan Raza, M. Ajmal Khan, Rida Batool, Faizah Altaf, Rohama Gill i Fida Hussain. "Ternary Alkali Carbonates Effect on Electrochemical Characterization of Nanocomposite Calcium-Doped Ceria Electrolytes (LNK-CDC) for SOFC". Journal of Electrochemical Energy Conversion and Storage 17, nr 1 (20.12.2019). http://dx.doi.org/10.1115/1.4043490.
Pełny tekst źródłaAbbas, Ghazanfar, Rizwan Raza, M. Ashraf Chaudhry i Bin Zhu. "Preparation and Characterization of Nanocomposite Calcium Doped Ceria Electrolyte With Alkali Carbonates (NK-CDC) for SOFC". Journal of Fuel Cell Science and Technology 8, nr 4 (1.04.2011). http://dx.doi.org/10.1115/1.4003635.
Pełny tekst źródła"Magnetic ZnO/CdO Nanocomposite for Effective Drug Delivery System for Cancer Therapy". Biointerface Research in Applied Chemistry 13, nr 1 (30.01.2022): 60. http://dx.doi.org/10.33263/briac131.060.
Pełny tekst źródła"Sr3+/Sm3+ Co-Doped Based Two Phase Nanocomposite Electrolytes". ECS Meeting Abstracts, 2010. http://dx.doi.org/10.1149/ma2010-01/9/558.
Pełny tekst źródłaCai, Yixiao, Yang Chen, Muhammad Akbar, Bin Jin, Zhengwen Tu, Naveed Mushtaq, Baoyuan Wang, Xiangyang Qu, Chen Xia i Yizhong Huang. "A Bulk-Heterostructure Nanocomposite Electrolyte of Ce0.8Sm0.2O2-δ–SrTiO3 for Low-Temperature Solid Oxide Fuel Cells". Nano-Micro Letters 13, nr 1 (styczeń 2021). http://dx.doi.org/10.1007/s40820-020-00574-3.
Pełny tekst źródłaAl‐Sagheer, L. A. M., i A. Rajeh. "Synthesis, characterization, electrical, and magnetic properties of polyvinyl alcohol/carboxymethyl cellulose blend doped with nickel ferrites nanoparticles for magneto‐electronic devices". Polymer Composites, 7.08.2023. http://dx.doi.org/10.1002/pc.27624.
Pełny tekst źródłaPark, Sung-Chul, Jong-Jin Lee, Seung-Ho Lee, Jooho Moon i Sang-Hoon Hyun. "Design and Preparation of SOFC Unit Cells Using Scandia-Stabilized Zirconia Electrolyte for Intermediate Temperature Operation". Journal of Fuel Cell Science and Technology 8, nr 4 (25.03.2011). http://dx.doi.org/10.1115/1.4003611.
Pełny tekst źródła