Gotowa bibliografia na temat „Cauchy-type integrals”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cauchy-type integrals”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Cauchy-type integrals"

1

Kapustin, V. V. "Cauchy-type integrals and singular measures". St. Petersburg Mathematical Journal 24, nr 5 (24.07.2013): 743–57. http://dx.doi.org/10.1090/s1061-0022-2013-01263-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pakovich, F., N. Roytvarf i Y. Yomdin. "Cauchy-type integrals of algebraic functions". Israel Journal of Mathematics 144, nr 2 (wrzesień 2004): 221–91. http://dx.doi.org/10.1007/bf02916714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Abdulkawi, M. "Bounded solution of Cauchy type singular integral equation of the first kind using differential transform method". JOURNAL OF ADVANCES IN MATHEMATICS 14, nr 1 (30.04.2018): 7580–95. http://dx.doi.org/10.24297/jam.v14i1.7049.

Pełny tekst źródła
Streszczenie:
In this paper, an efficient approximate solution for solving the Cauchy type singular integral equation of the first kind is presented. Bounded solution of the Cauchy type singular Integral equation is discussed. Two type of kernel, separable and convolution, are considered. The differential transform method is used in the solution. New theorems for transformation of Cauchy singular integrals are given with proofs. Approximate results areshown to illustrate the efficiency and accuracy of the approximate solution.
Style APA, Harvard, Vancouver, ISO itp.
4

Lin, Feng. "On error for Cauchy principal integrals and Cauchy-type integrals under perturbation of integral curve and their applications". Complex Variables and Elliptic Equations 60, nr 11 (26.03.2015): 1457–74. http://dx.doi.org/10.1080/17476933.2015.1022167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lanzani, Loredana, i Elias M. Stein. "Cauchy-type integrals in several complex variables". Bulletin of Mathematical Sciences 3, nr 2 (9.06.2013): 241–85. http://dx.doi.org/10.1007/s13373-013-0038-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Vinogradov, S. A. "Continuity of perturbations of integral operators, Cauchy-type integrals, maximal operators". Journal of Soviet Mathematics 34, nr 6 (wrzesień 1986): 2033–39. http://dx.doi.org/10.1007/bf01741577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Cai, Hongzhu, i Michael Zhdanov. "Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data". GEOPHYSICS 80, nr 2 (1.03.2015): G81—G94. http://dx.doi.org/10.1190/geo2014-0332.1.

Pełny tekst źródła
Streszczenie:
One of the most important applications of gravity surveys in regional geophysical studies is determining the depth to basement. Conventional methods of solving this problem are based on the spectrum and/or Euler deconvolution analysis of the gravity field and on parameterization of the earth’s subsurface into prismatic cells. We have developed a new method of solving this problem based on 3D Cauchy-type integral representation of the potential fields. Traditionally, potential fields have been calculated using volume integrals over the domains occupied by anomalous masses subdivided into prismatic cells. This discretization can be computationally expensive, especially in a 3D case. The technique of Cauchy-type integrals made it possible to represent the gravity field and its gradients as surface integrals. In this approach, only the density contrast surface between sediment and basement needed to be discretized for the calculation of gravity field. This was especially significant in the modeling and inversion of gravity data for determining the depth to the basement. Another important result was developing a novel method of inversion of gravity data to recover the depth to basement, based on the 3D Cauchy-type integral representation. Our numerical studies determined that the new method is much faster than conventional volume discretization method to compute the gravity response. Our synthetic model studies also showed that the developed inversion algorithm based on Cauchy-type integral is capable of recovering the geometry and depth of the sedimentary basin effectively with a complex density profile in the vertical direction.
Style APA, Harvard, Vancouver, ISO itp.
8

SAIRA i Shuhuang Xiang. "Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels". Symmetry 11, nr 6 (28.05.2019): 728. http://dx.doi.org/10.3390/sym11060728.

Pełny tekst źródła
Streszczenie:
In this paper, a fast and accurate numerical Clenshaw-Curtis quadrature is proposed for the approximation of highly oscillatory integrals with Cauchy and logarithmic singularities, ⨍ − 1 1 f ( x ) log ( x − α ) e i k x x − t d x , t ∉ ( − 1 , 1 ) , α ∈ [ − 1 , 1 ] for a smooth function f ( x ) . This method consists of evaluation of the modified moments by stable recurrence relation and Cauchy kernel is solved by steepest descent method that transforms the oscillatory integral into the sum of line integrals. Later theoretical analysis and high accuracy of the method is illustrated by some examples.
Style APA, Harvard, Vancouver, ISO itp.
9

Conceição, Ana C., i Jéssica C. Pires. "Symbolic Computation Applied to Cauchy Type Singular Integrals". Mathematical and Computational Applications 27, nr 1 (31.12.2021): 3. http://dx.doi.org/10.3390/mca27010003.

Pełny tekst źródła
Streszczenie:
The development of operator theory is stimulated by the need to solve problems emerging from several fields in mathematics and physics. At the present time, this theory has wide applications in the study of non-linear differential equations, in linear transport theory, in the theory of diffraction of acoustic and electromagnetic waves, in the theory of scattering and of inverse scattering, among others. In our work, we use the computer algebra system Mathematica to implement, for the first time on a computer, analytical algorithms developed by us and others within operator theory. The main goal of this paper is to present new operator theory algorithms related to Cauchy type singular integrals, defined in the unit circle. The design of these algorithms was focused on the possibility of implementing on a computer all the extensive symbolic and numeric calculations present in the algorithms. Several nontrivial examples computed with the algorithms are presented. The corresponding source code of the algorithms has been made available as a supplement to the online edition of this article.
Style APA, Harvard, Vancouver, ISO itp.
10

Caballero, J., i K. Sadarangani. "A Cauchy–Schwarz type inequality for fuzzy integrals". Nonlinear Analysis: Theory, Methods & Applications 73, nr 10 (listopad 2010): 3329–35. http://dx.doi.org/10.1016/j.na.2010.07.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Cauchy-type integrals"

1

Zhou, Shuang. "Studies on summability of formal solution to a cauchy problem and on integral functions of Mordell’s type". Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10058/document.

Pełny tekst źródła
Streszczenie:
Dans cette Thèse, nous considérons dans le plan complexe l’équation de la chaleur avec la condition initiale singulière u(0,z)=1/(1-exp(z)). Ce problème de Cauchy possède une unique solution formelle série entière, laquelle peut être sommée par des procédés de sommation différents. Le but est d’établir des relations existant entre les différentes sommes ainsi étudiées: d’une part la somme de Borel de celle-ci et, de l’autre, deux versions q-analogues de la somme de Borel qui sont obtenuesrespectivement avec le noyau de la chaleur et la fonction thêta de Jacobi. Notre analyse sur le phénomène de Stokes correspondant nous conduit à une généralisation d’un résultat de Mordell sur le nombre de classes des formes quadratiques binaires définies et positives
In this thesis, we consider the heat equation with the singular initial condition u(0,z)=1/(1-exp(z)), where z is a complex variable. The aim is to establish relations among three sums of a divergent formal solution to this Cauchy problem: its Borel-sum and two q-Borel-sums obtained by means of heat kernel and theta function respectively. This Stokes analysis allows us to give a generalization to a classical result of Mordell related to the class numbers of the binary positive-definite quadratic forms
Style APA, Harvard, Vancouver, ISO itp.
2

Kaye, Adelina E. "Singular integration with applications to boundary value problems". Kansas State University, 2016. http://hdl.handle.net/2097/32717.

Pełny tekst źródła
Streszczenie:
Master of Science
Mathematics
Nathan Albin
Pietro Poggi-Corradini
This report explores singular integration, both real and complex, focusing on the the Cauchy type integral, culminating in the proof of generalized Sokhotski-Plemelj formulae and the applications of such to a Riemann-Hilbert problem.
Style APA, Harvard, Vancouver, ISO itp.
3

LY, KIM HA. "ON TWO APPROACHES FOR PARTIAL DIFFERENTIAL EQUATIONS IN SEVERAL COMPLEX VARIABLES". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423534.

Pełny tekst źródła
Streszczenie:
The aim of this thesis is to present influence of notations of ''type" on partial differential equations in several complex variables. The notations of "type" here include the finite and the infinite type in the sense of Hormander, and D'Angelo. In particular, in the first part, under the finite type condition, we will consider the existence and uniqueness of solutions for the initial value problem associated to the heat operator δs+□b on CR manifolds. The finite type m is the critical condition to provide pointwise estimates of the heat kernel via theory of singular integral operators developed by E. Stein and A. Nagel, D.H. Phong and E. Stein. Next, in the second part, we will introduce a new method to investigate the Cauchy-Riemann equations δu = φ. The solutions are constructed via the integral representation method. Moreover, we will show that the new method here is also applied well to the complex Monge-Ampère operator (ddc)n inCn. The main point is that our method can pass some well-known results from the case of finite type to infinite type.
Lo scopo di questa tesi è quello di presentare l'influenza di notazioni di " tipo'' su equazioni differenziali alle derivate parziali in più variabili complesse. Le notazioni di "tipo" qui includono il finito e il tipo di infinito, nel senso di Hormander, e D'Angelo. In particolare, nella prima parte, a condizione tipo finito, prenderemo in considerazione l'esistenza e l'unicità delle soluzioni per il problema del valore iniziale associato ai operatore calore δs+□b su varietà CR. Il tipo finito m è la condizione fondamentale per fornire stime puntuali del nucleo del calore attraverso la teoria degli operatori integrali singolari sviluppate da E. Stein e A. Nagel, D.H. Phong e E. Stein. Prossimo, nella seconda parte, introdurremo un nuovo metodo per indagare la equazioni Cauchy-Riemann δu = φ. Le soluzioni sono costruite con via metodo rappresentazione integrale. Inoltre, mostreremo che il nuovo metodo qui viene applicato anche ben al complesso operatore Monge-Ampère (ddc)n inCn. Il punto principale è che il nostro metodo può passare alcuni risultati noti dal caso di tipo finito al tipo di infinito.
Style APA, Harvard, Vancouver, ISO itp.
4

Lee, Jia-Wei, i 李家瑋. "Application of the Clifford algebra valued boundary integral equations with Cauchy-type kernels to some engineering problems". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/02351203973629353925.

Pełny tekst źródła
Streszczenie:
博士
國立臺灣海洋大學
河海工程學系
104
The conventional complex variable boundary integral equation (CVBIE) based on the conventional Cauchy integral formula is powerful and suitable to solve two-dimensional problems. In particular, the unknown function is a complex-valued holomorphic function. In other words, the unknown function satisfies the Cauchy-Riemann equations. However, the most part of practical engineering problems are three-dimensional problems and do not necessarily satisfies Cauchy-Riemann equations. Therefore, there are two targets in this dissertation. One is to extend the conventional CVBIE to solve two-dimensional problems for which the unknown function is not a complex-valued holomorphic function. The other is to extend to three-dimensions and derive an extended BIE still preserving some properties of complex variables in the three-dimensional state. For the extension of the conventional CVBIE, we employ the Borel-Pompeiu formula to derive the generalized CVBIE. In this way, the torsion problems can be solved in the state of two shear stress fields directly. In addition, the torsional rigidity can also be determined simultaneously. Since the theory of complex variables has a limitation that is only suitable for 2-dimensional problems, we introduce Clifford algebra and Clifford analysis to replace complex variables to deal with 3-dimensional problems. Clifford algebra can be seen as an extension of complex or quaternionic algebras. Clifford analysis is also known as hypercomplex analysis. We apply the Clifford algebra valued Stokes' theorem to derive Clifford algebra valued BIEs with Cauchy-type kernels. In this way, some three-dimensional problem with multiple unknown fields may be solved straightforward. Finally, several electromagnetic scattering problems are considered to check the validity of the derived Clifford algebra valued BIEs.
Style APA, Harvard, Vancouver, ISO itp.
5

Бабак, Тетяна Юріївна. "Розв’язання характеристичного сингулярного інтегрального рівняння на замкненому контурі". Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/3075.

Pełny tekst źródła
Streszczenie:
Бабак Т. Ю. Розв’язання характеристичного сингулярного інтегрального рівняння на замкненому контурі : кваліфікаційна робота магістра спеціальності 111 "Математика" / наук. керівник Н. М. Д’яченко. Запоріжжя : ЗНУ, 2020. 59 с.
UA : Робота викладена на 59 сторінках друкованого тексту, містить 8 рисунків, 15 джерел. Об’єкт дослідження: характеристичні сингулярні інтегральні рівняння і крайові задачі теорії аналітичних функцій, до яких вони зводяться. Мета роботи: вивчити теоретичні відомості щодо розв’язання характеристичних сингулярних інтегральних рівнянь методом зведення їх до крайових задач Рімана; розв’язати конкретні приклади для рівнянь на зімкненому контурі і на дійсній осі. Методи дослідження: зведення характеристичних сингулярних інтегральних рівнянь до крайових задач Рімана, метод Гахова розв’язання крайових задач Рімана. У роботі вивчено основні поняття, пов’язані з характеристичними сингулярними інтегральними рівняннями. Викладено метод Гахова Ф.Д. розв’язання рівнянь такого типу зведенням їх до крайових задач Рімана. Наведено приклади розв’язання характеристичних сингулярних інтегральних рівнянь на замкненому контурі та на дійсній осі, деякі із запропонованих в підручнику Гахова Ф.Д., а деякі – авторські.
EN : The work is presented on 59 pages of printed text, 8 figures, 15 references. The object of the study is the characteristic singular integral equations and the boundary value problems of the theory of analytic functions to which they are reduced. The aim of the study is to study theoretical information about solving characteristic singular integral equations by reducing them to Riemann boundary problems; to solve some examples of the equations for closed contour and real axis. The methods of research are the reduction of the characteristic singular integral equations to the Riemann boundary-value problems, the Gakhov method for solving of the Riemann boundary-value problems. The basic concepts related to the characteristic singular integral equations are studied. The F. Gakhov method for solving equations of this type by reducing them to Riemann boundary-value problems. The examples of solving characteristic singular integral equations on a closed circuit and on a real axis are presented, some of them are proposed in the F. Gakhov textbook, and some are author's.
Style APA, Harvard, Vancouver, ISO itp.
6

Саф'янік, Олена Миколаївна. "Дослідження виключних випадків крайової задачі Рімана на замкненому контурі та на дійсній осі". Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/3080.

Pełny tekst źródła
Streszczenie:
Саф'янік О. М. Дослідження виключних випадків крайової задачі Рімана на замкненому контурі та на дійсній осі : кваліфікаційна робота магістра спеціальності 111 "Математика" / наук. керівник Н. М. Д’яченко. Запоріжжя : ЗНУ, 2020. 70 с.
UA : Робота викладена на 70 сторінках друкованого тексту, містить 4 рисунки, 24 джерела, 2 додатки. Об’єкт дослідження: крайова задача Рімана у виключному випадку на замкненому контурі та на дійсній осі. Мета роботи: вивчити метод Гахова розв’язання крайової задачі Рімана у виключному випадку, коли коефіцієнт крайової задачі в окремих точках замкненого контура обертається в нуль або нескінченість цілих порядків, дослідити виключний випадок на дійсній осі, розв’язати конкретні приклади. Метод дослідження: аналітичний метод Гахова розв’язання крайових задач Рімана. Класична постановка крайової задачі Рімана передбачає що коефіцієнт цієї задачі не може обертатися в нуль і нескінченність в точках контура. Якщо припустити, що в скінченій кількості точок на контурі коефіцієнт має нуль і нескінченності скінчених порядків, то така крайова задача Рімана відноситься до виключного випаду. Саме така задача поставлена і розв’язується в роботі. Метод розв’язання поставленої задачі на зімкненому контурі викладено в підручнику Гахова Ф.Д. В роботі досліджено підхід до розв’язання цієї задачі на дійсній осі. Вивчені методи застосовані до розв’язання конкретних прикладів, частина з них є авторськими.
EN : The work is presented on 70 pages of printed text, 4 figures, 24 references, 2 supplements. The object of the study is Riemann boundary value problem in an exceptional case on a closed loop and on the real axis. The aim of the study is to study the Gakhov method of solving the Riemann boundary value problem in the exceptional case, where the coefficient of the boundary value problem at individual points of the closed loop becomes zero or infinity of entire orders, investigate the exceptional case on the real axis, and to solve specific examples. The method of research is Gakhov's analytical method of solving Riemann boundary problems. The classical formulation of the Riemann boundary-value problem implies that the coefficient of this problem cannot be equal zero and infinity at the contour points. Assuming that in the finite number of points on the contour, the coefficient has zero and infinity of finite orders, this Riemann boundary value problem is correspoded to an exceptional case. This is precisely the problem that is posed and solved in the work. The method for solving these problems on a closed loop is described in textbook of Gakhov F.D. This paper is explored the approach to solving this problem on a real axis. The methods studied are applied to solving specific examples, some of them are author's.
Style APA, Harvard, Vancouver, ISO itp.
7

Савчук, Марія Вікторівна. "Аналітичний розв’язок крайової задачі теорії аналітичних функцій на многозв’язній області". Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/3090.

Pełny tekst źródła
Streszczenie:
Савчук М. В. Аналітичний розв’язок крайової задачі теорії аналітичних функцій на многозв’язній області : кваліфікаційна робота магістра спеціальності 111 "Математика" / наук. керівник Н. М. Д’яченко. Запоріжжя : ЗНУ, 2020. 53 с.
UA : Робота викладена на 53 сторінках друкованого тексту, містить 8 рисунків, 14 джерел, 2 додатки. Об’єкт дослідження: крайові задачі теорії аналітичних функцій на многозвязній області. Мета роботи: дослідити методику розв’язання крайової задачі Рімана на многозв’язній області; навести приклади і розв’язати конкретні крайові задачі Рімана на многозв’язних областях в тому числі на обмеженій многозв’язній області, на многозв’язній площині, на многозв’язній півплощині. Метод дослідження: аналітичний. У роботі наведено методику Гахова Ф.Д. для розв’язання задачі Рімана на однозв’язній та многозв’язній областях. Наведено авторські прикладі розв’язання крайових задач Рімана на дво- та тризв’язній обмежених областях для різних значень індексу. Приведені прикладі даної задачі на многозв’язних необмежених областях. Останній приклад демонструє випадок, де одним із контурів виступає дійсна вісь.
EN : The work is presented on 53 pages of printed text, 8 figures, 14 references, 2 supplements. The object of the study is boundary value problems of the theory of analytical functions on the multiply connected domain. The aim of the study is to explore the method of solving the Riemann boundary value problem on the multiply connected domain; to give examples and solve some specific Riemann boundary value problems on the multiply connected domain, including a the multiply connected domain, a the multiply connected plane, a the multiply connected simiplane. The method of research is analytical. The paper describes the method of Gakhov F.D. of solving the Riemann problem on multiply connected domain [6]. The author presents examples of solving Riemann boundary-value problems in two- and three-bounded regions for different index values. Here are examples of this problem in multifaceted unbounded domains. The last example demonstrates a case where one of the contours is a real axis.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Cauchy-type integrals"

1

Kung, Sheng. Integrals of Cauchy type on the ball. Cambridge, MA: International Press, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sheng-Gong. Integrals of Cauchy Type on the Ball (Series in Analysis). International Press of Boston, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gautschi, Walter. Orthogonal Polynomials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198506720.001.0001.

Pełny tekst źródła
Streszczenie:
This is the first book on constructive methods for, and applications of orthogonal polynomials, and the first available collection of relevant Matlab codes. The book begins with a concise introduction to the theory of polynomials orthogonal on the real line (or a portion thereof), relative to a positive measure of integration. Topics which are particularly relevant to computation are emphasized. The second chapter develops computational methods for generating the coefficients in the basic three-term recurrence relation. The methods are of two kinds: moment-based methods and discretization methods. The former are provided with a detailed sensitivity analysis. Other topics addressed concern Cauchy integrals of orthogonal polynomials and their computation, a new discussion of modification algorithms, and the generation of Sobolev orthogonal polynomials. The final chapter deals with selected applications: the numerical evaluation of integrals, especially by Gauss-type quadrature methods, polynomial least squares approximation, moment-preserving spline approximation, and the summation of slowly convergent series. Detailed historic and bibliographic notes are appended to each chapter. The book will be of interest not only to mathematicians and numerical analysts, but also to a wide clientele of scientists and engineers who perceive a need for applying orthogonal polynomials.
Style APA, Harvard, Vancouver, ISO itp.
4

Critical comments on Why bother to compute? [and] Cauchy type kernel integral equations--a fabulous mistake. [Alexandria, VA] (3350 Martha Custis Dr., Alexandria 22302): T. Leko, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Borodin, Alexei, i Leonid Petrov. Integrable probability: stochastic vertex models and symmetric functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0002.

Pełny tekst źródła
Streszczenie:
This chapter presents the study of a homogeneous stochastic higher spin six-vertex model in a quadrant. For this model concise integral representations for multipoint q-moments of the height function and for the q-correlation functions are derived. At least in the case of the step initial condition, these formulas degenerate in appropriate limits to many known formulas of such type for integrable probabilistic systems in the (1+1)d KPZ universality class, including the stochastic six-vertex model, ASEP, various q-TASEPs, and associated zero-range processes. The arguments are largely based on properties of a family of symmetric rational functions that can be defined as partition functions of the higher spin six-vertex model for suitable domains; they generalize classical Hall–Littlewood and Schur polynomials. A key role is played by Cauchy-like summation identities for these functions, which are obtained as a direct corollary of the Yang–Baxter equation for the higher spin six-vertex model.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Cauchy-type integrals"

1

Ogata, Hidenori, Masaaki Sugiura i Masatake Mori. "DE-Type Quadrature Formulae for Cauchy Principal-Value Integrals and for Hadamard Finite-Part Integrals". W Proceedings of the Second ISAAC Congress, 357–66. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0269-8_42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Luna-Elizarrarás, M. E., M. A. Macías-Cedeño i M. Shapiro. "Hyperderivatives in Clifford Analysis and Some Applications to the Cliffordian Cauchy-type Integrals". W Hypercomplex Analysis, 221–34. Basel: Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-9893-4_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Blaya, R. Abreu, J. Bory Reyes i B. Schneider. "On Cauchy Type Integrals Related to the Cimmino System of Partial Differential Equations". W Operator Theory, Operator Algebras and Applications, 81–92. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0816-3_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

González, Jorge Bustamante. "Approximation by lipschitz functions and its application to boundary value of cauchy-type integrals". W Lecture Notes in Mathematics, 106–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0089586.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Levinson, Norman. "Simplified Treatment of Integrals of Cauchy Type, the Hilbert Problem and Singular Integral Equations. Appendix: Poincaré-Bertrand Formula". W Selected Papers of Norman Levinson, 505–33. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-5332-7_45.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Levinson, Norman. "Simplified Treatment of Integrals of Cauchy Type, the Hilbert Problem and Singular Integral Equations. Appendix: Poincaré-Bertrand Formula". W Selected Papers of Norman Levinson Volume 1, 505–33. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-5341-9_45.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhdanov, Michael S. "Cauchy-Type Integral". W Integral Transforms in Geophysics, 3–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72628-6_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Estrada, Ricardo, i Ram P. Kanwal. "Cauchy Type Integral Equations". W Singular Integral Equations, 71–123. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1382-6_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Plaksa, Sergiy A., i Vitalii S. Shpakivskyi. "Hypercomplex Cauchy-Type Integral". W Monogenic Functions in Spaces with Commutative Multiplication and Applications, 117–32. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32254-9_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhdanov, Michael S. "Three-Dimensional Cauchy-Type Integral Analogs". W Integral Transforms in Geophysics, 111–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72628-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Cauchy-type integrals"

1

GALYBIN, ALEXANDER N. "CALCULATION OF CAUCHY-TYPE INTEGRALS NEAR CONTOURS IN DIRECT AND INVERSE ELASTIC PROBLEMS". W BEM/MRM44. Southampton UK: WIT Press, 2021. http://dx.doi.org/10.2495/be440041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhdanov, Michael S., Glenn A. Wilson i Xiaojun Liu. "A new method of terrain correcting airborne gravity gradiometry data using 3D Cauchy-type integrals". W SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 2012. http://dx.doi.org/10.1190/segam2012-0744.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zhdanov, Michael, i Hongzhu Cai. "Inversion of gravity and gravity gradiometry data for density contrast surfaces using Cauchy-type integrals". W SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 2013. http://dx.doi.org/10.1190/segam2013-0429.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cai*, Hongzhu, i Michael Zhdanov. "Inversion of gravity data in the Big Bear Lake Area to recover depth to basement using Cauchy-type integrals". W SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0251.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

ERIKSSON, SIRKKA-LIISA. "CAUCHY-TYPE INTEGRAL FORMULAS FOR k-HYPERMONOGENIC FUNCTIONS". W Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bolívar, Yanett, Antonio Di Teodoro i Judith Vanegas. "Generalized Cauchy-Riemann-type operators and some integral representation formulas". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912659.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

DRAGOMIR, S. S. "APPROXIMATING THE CAUCHY PRINCIPAL VALUE INTEGRAL VIA HERMITE-HADAMARD TYPE INEQUALITIES". W Proceedings of the Wollongong Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776372_0009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Setia, Amit, Vaishali Sharma i Yucheng Liu. "Numerical method to solve Cauchy type singular integral equation with error bounds". W ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2017. http://dx.doi.org/10.1063/1.4972733.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

LIN, JUAN. "STABILITY OF CAUCHY TYPE INTEGRAL APPLIED TO THE FUNDAMENTAL PROBLEMS IN PLANE ELASTICITY". W Proceedings of the Third International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327862_0032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Schneider, Baruch. "Some properties of the Cauchy-type integral for the Laplace vector fields theory". W GLOBAL ANALYSIS AND APPLIED MATHEMATICS: International Workshop on Global Analysis. AIP, 2004. http://dx.doi.org/10.1063/1.1814740.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii