Gotowa bibliografia na temat „Catalytic reaction dynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Catalytic reaction dynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Catalytic reaction dynamics"
Sun, Juan-Juan, Qi-Yuan Fan, Xin Jin, Jing-Li Liu, Tong-Tong Liu, Bin Ren i Jun Cheng. "Size-dependent phase transitions boost catalytic activity of sub-nanometer gold clusters". Journal of Chemical Physics 156, nr 14 (14.04.2022): 144304. http://dx.doi.org/10.1063/5.0084165.
Pełny tekst źródłaSA, Hosseini. "CFD Simulation of Catalytic Cracking of n-Heptane in a Fixed Bed Reactor". Petroleum & Petrochemical Engineering Journal 4, nr 2 (2020): 1–8. http://dx.doi.org/10.23880/ppej-16000220.
Pełny tekst źródłaDasgupta, Medhanjali, Dominik Budday, Saulo H. P. de Oliveira, Peter Madzelan, Darya Marchany-Rivera, Javier Seravalli, Brandon Hayes i in. "Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis". Proceedings of the National Academy of Sciences 116, nr 51 (4.12.2019): 25634–40. http://dx.doi.org/10.1073/pnas.1901864116.
Pełny tekst źródłaHazra, Jagadish P., Nisha Arora, Amin Sagar, Shwetha Srinivasan, Abhishek Chaudhuri i Sabyasachi Rakshit. "Force-activated catalytic pathway accelerates bacterial adhesion against flow". Biochemical Journal 475, nr 16 (29.08.2018): 2611–20. http://dx.doi.org/10.1042/bcj20180358.
Pełny tekst źródłaKristoffersen, Henrik H., Tejs Vegge i Heine Anton Hansen. "OH formation and H2 adsorption at the liquid water–Pt(111) interface". Chemical Science 9, nr 34 (2018): 6912–21. http://dx.doi.org/10.1039/c8sc02495b.
Pełny tekst źródłaHe, Yang, Jin-Cheng Liu, Langli Luo, Yang-Gang Wang, Junfa Zhu, Yingge Du, Jun Li, Scott X. Mao i Chongmin Wang. "Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition". Proceedings of the National Academy of Sciences 115, nr 30 (9.07.2018): 7700–7705. http://dx.doi.org/10.1073/pnas.1800262115.
Pełny tekst źródłaWILLIAMS, G. S. BLAIR, AFTAB M. HOSSAIN, SHIYING SHANG, DAVID E. KRANBUEHL i CAREY K. BAGDASSARIAN. "EVOLUTION OF A CATALYTICALLY EFFECTIVE MODEL ENZYME: THE IMPORTANCE OF TUNED CONFORMATIONAL FLUCTUATIONS". Journal of Theoretical and Computational Chemistry 02, nr 03 (wrzesień 2003): 323–34. http://dx.doi.org/10.1142/s0219633603000586.
Pełny tekst źródłaFan, Rong, Parsa Habibi, Johan T. Padding i Remco Hartkamp. "Coupling mesoscale transport to catalytic surface reactions in a hybrid model". Journal of Chemical Physics 156, nr 8 (28.02.2022): 084105. http://dx.doi.org/10.1063/5.0081829.
Pełny tekst źródłaPark, Jae-Hyun, Ji-Hye Yun, Yingchen Shi, Jeongmin Han, Xuanxuan Li, Zeyu Jin, Taehee Kim i in. "Non-Cryogenic Structure and Dynamics of HIV-1 Integrase Catalytic Core Domain by X-ray Free-Electron Lasers". International Journal of Molecular Sciences 20, nr 8 (20.04.2019): 1943. http://dx.doi.org/10.3390/ijms20081943.
Pełny tekst źródłaSekizawa, O., T. Uruga, Y. Takagi, K. Nitta, K. Kato, H. Tanida, K. Uesugi i in. "SPring-8 BL36XU: Catalytic Reaction Dynamics for Fuel Cells". Journal of Physics: Conference Series 712 (maj 2016): 012142. http://dx.doi.org/10.1088/1742-6596/712/1/012142.
Pełny tekst źródłaRozprawy doktorskie na temat "Catalytic reaction dynamics"
Gelß, Patrick [Verfasser]. "The Tensor-Train Format and Its Applications : Modeling and Analysis of Chemical Reaction Networks, Catalytic Processes, Fluid Flows, and Brownian Dynamics / Patrick Gelß". Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1140487140/34.
Pełny tekst źródłaYun, Thomas. "Fuel reformation and hydrogen generation in variable volume membrane batch reactors with dynamic liquid fuel introduction". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53550.
Pełny tekst źródłaPham, Van Tuyet. "The synthesis and reactions of chiral 1,3,2-oxazaphospholane derivations : kinetic and mechanistic studies of polyether omega-phase catalyzed reactions of potassium cyanide with benzyl bromide in non-polar, aprotic solvent toluene". Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/27416.
Pełny tekst źródłaFusion, Joe. "The Role of Environmental Dynamics in the Emergence of Autocatalytic Networks". PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2458.
Pełny tekst źródłaKumar, Ankan. "Physical Models and Computational Algorithms for Simulation of Catalytic Monolithic Reactors". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1230142666.
Pełny tekst źródłaLarsson, Rikard. "Reversible Sulfur Reactions in Pre-Equilibrated and Catalytic Self-Screening Dynamic Combinatorial Chemistry Protocols". Licentiate thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3917.
Pełny tekst źródłaLIN, PENG. "Enzyme cascade reactions on 3D DNA scaffold with dynamic shape transformation". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/265209.
Pełny tekst źródła新制・課程博士
博士(エネルギー科学)
甲第23437号
エネ博第424号
新制||エネ||81(附属図書館)
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)教授 森井 孝, 教授 佐川 尚, 教授 片平 正人
学位規則第4条第1項該当
Doctor of Energy Science
Kyoto University
DFAM
Vongvilai, Pornrapee. "Dynamic Covalent Resolution: Applications in System Screening and Asymmetric Synthesis". Doctoral thesis, Stockholm : Skolan för kemivetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11200.
Pełny tekst źródłaRaymand, David. "Surface and Interface Studies of ZnO using Reactive Dynamics Simulation". Doctoral thesis, Uppsala universitet, Strukturkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129304.
Pełny tekst źródłaLorenzo, Maria Ortega. "Complexities and dynamics of the enantioselective site in heterogeneous catalysis : tartaric acid and methylacetoacetate on Cu(110)". Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366724.
Pełny tekst źródłaKsiążki na temat "Catalytic reaction dynamics"
F, Froment Gilbert, i Waugh K. C, red. Dynamics of surfaces and reaction kinetics in heterogeneous catalysis: Proceedings of the international symposium, Antwerp, Belgium, September 15-17, 1997. Amsterdam: Elsevier, 1997.
Znajdź pełny tekst źródłaNauman, E. B. Chemical reactor design, optimization, and scaleup. Wyd. 2. Hoboken, N.J: Wiley, 2008.
Znajdź pełny tekst źródłaChemical reactor design, optimization, and scaleup. New York: McGraw-Hill, 2002.
Znajdź pełny tekst źródła1989), Tutzing-Symposion (27th. Instationary processes and dynamic experimental methods in catalysis, electrochemistry, and corrosion: Papers of the 27th Tutzing Symposium, March 06-09, 1989. Weinheim, Federal Republic of Germany: VCH, 1989.
Znajdź pełny tekst źródłaSucci, Sauro. Lattice Boltzmann for reactive flows. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0026.
Pełny tekst źródłaChemical Kinetics and Reaction Dynamics. Springer, 2006.
Znajdź pełny tekst źródłaTanaka, Ken-ichi. Dynamic Chemical Processes on Solid Surfaces: Chemical Reactions and Catalysis. Springer, 2017.
Znajdź pełny tekst źródłaTanaka, Ken-ichi. Dynamic Chemical Processes on Solid Surfaces: Chemical Reactions and Catalysis. Springer, 2017.
Znajdź pełny tekst źródłaTanaka, Ken-ichi. Dynamic Chemical Processes on Solid Surfaces: Chemical Reactions and Catalysis. Springer, 2018.
Znajdź pełny tekst źródłaFroment, G. F., i K. C. Waugh. Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis. Elsevier Science & Technology Books, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Catalytic reaction dynamics"
Duncan, T. M. "The Study of Dynamics at Catalytic Surfaces with Nuclear Magnetic Resonance Spectroscopy". W Elementary Reaction Steps in Heterogeneous Catalysis, 221–41. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1693-0_13.
Pełny tekst źródłaArora, Karunesh, i Charles L. Brooks. "Multiple Intermediates, Diverse Conformations, and Cooperative Conformational Changes Underlie the Catalytic Hydride Transfer Reaction of Dihydrofolate Reductase". W Dynamics in Enzyme Catalysis, 165–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/128_2012_408.
Pełny tekst źródłaHaller, Gary L., i George W. Coulston. "Dynamics of Heterogeneously Catalyzed Reactions". W Catalysis, 131–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75956-7_3.
Pełny tekst źródłaHolloway, S. "Reaction Dynamics at Surfaces". W Elementary Reaction Steps in Heterogeneous Catalysis, 341–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1693-0_21.
Pełny tekst źródłaJanardhanan, Vinod M., i Olaf Deutschmann. "Computational Fluid Dynamics of Catalytic Reactors". W Modeling and Simulation of Heterogeneous Catalytic Reactions, 251–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527639878.ch8.
Pełny tekst źródłaGroß, Axel. "Dynamics of Reactions at Surfaces". W Modeling and Simulation of Heterogeneous Catalytic Reactions, 39–70. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527639878.ch2.
Pełny tekst źródłaSchwartz, Steven D. "Protein Dynamics and the Enzymatic Reaction Coordinate". W Dynamics in Enzyme Catalysis, 189–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/128_2012_412.
Pełny tekst źródłaChristmann, K., i G. Ertl. "Surface Structure and Reaction Dynamics in Catalysis". W Catalyst Characterization Science, 222–37. Washington, DC: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0288.ch020.
Pełny tekst źródłaCoulston, George W., i Gary L. Haller. "The Dynamics of Alkane Adsorption on Metals". W Elementary Reaction Steps in Heterogeneous Catalysis, 197–219. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1693-0_12.
Pełny tekst źródłaHouben, J. L. "Introduction to the Basic Concepts in Reaction Dynamics". W The Enzyme Catalysis Process, 275–82. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-1607-8_18.
Pełny tekst źródłaStreszczenia konferencji na temat "Catalytic reaction dynamics"
Chumakov, Gennadii A., Natalia A. Chumakova, Theodore E. Simos, George Psihoyios i Ch Tsitouras. "Modeling of Chaotic Dynamics in a Heterogeneous Catalytic Reaction". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241444.
Pełny tekst źródłaKirovskaya, I. A., E. V. Mironova i T. L. Bukashkina. "Comparative adsorption and catalytic properties of CDSE-CDTE system components in carbon oxide (II) oxidation reaction". W 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005664.
Pełny tekst źródłaTakeuchi, Y., F. Jin, H. Enomoto i K. Tohji. "Application of Acid Catalytic Hydrothermal Reaction to Conversion of Carbohydrate Biomass into Valuable Substances". W WATER DYANMICS: 4th International Workshop on Water Dynamics. AIP, 2007. http://dx.doi.org/10.1063/1.2721278.
Pełny tekst źródłaChang, S. L., S. A. Lottes, C. Q. Zhou i M. Petrick. "A Hybrid Technique for Coupling Chemical Kinetics and Hydrodynamics Computations in Multi-Phase Reacting Flow Systems". W ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0877.
Pełny tekst źródłaDas, Susanta K., i Kranthi K. Gadde. "Modeling of a Catalytic Flat Plate Fuel Reformer for Hydrogen-Rich Reformate Fuel". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63298.
Pełny tekst źródłaTahara, Mika, Hirohide Oikawa i Kenji Arai. "Numerical Analysis of Catalytic Recombiner Performance Considering a 3-Dimensional Gas Flow". W 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22508.
Pełny tekst źródłaWarner, Brent L., Ayele A. Tegegne i Muhammad K. Akbar. "Design of an Efficient Catalytic Converter Using CFD Techniques". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67181.
Pełny tekst źródłaDas, Susanta K., i K. Joel Berry. "Experimental Performance Evaluation of a Catalytic Flat Plate Fuel Reformer for Fuel Cell Grade Reformate". W ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6399.
Pełny tekst źródłaSantillo, Mario, Steve Magner, Mike Uhrich i Mrdjan Jankovic. "Towards ECU-Executable Control-Oriented Models of a Three-Way Catalytic Converter". W ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9653.
Pełny tekst źródłaWilhite, David C. "The Use of Computational Fluid Dynamics (CFD) in Selective Catalytic Reduction System Ductwork Design". W ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1006.
Pełny tekst źródłaRaporty organizacyjne na temat "Catalytic reaction dynamics"
Battaglia, Francine, Foster Agblevor, Michael Klein i Reza Sheikhi. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics. Office of Scientific and Technical Information (OSTI), grudzień 2015. http://dx.doi.org/10.2172/1329004.
Pełny tekst źródła