Artykuły w czasopismach na temat „Catalytic performance”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Catalytic performance”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Alom, Jahangir, Md Saif Hasan, Md Asaduzaman, Mohammad Taufiq Alam, Dalel Belhaj, Raja Selvaraj, Md Ashraf Hossain, Masoumeh Zargar i Mohammad Boshir Ahmed. "Catalytical Performance of Heteroatom Doped and Undoped Carbon-Based Materials". Catalysts 13, nr 5 (29.04.2023): 823. http://dx.doi.org/10.3390/catal13050823.
Pełny tekst źródłaVogt, Claus Dieter, E. Ohara, M. Brayer, M. Makino i E. R. Becker. "Predicting catalytic performance". ATZautotechnology 1, nr 4 (lipiec 2001): 62–65. http://dx.doi.org/10.1007/bf03246625.
Pełny tekst źródłaParkinson, Gareth S. "Single-Atom Catalysis: How Structure Influences Catalytic Performance". Catalysis Letters 149, nr 5 (25.02.2019): 1137–46. http://dx.doi.org/10.1007/s10562-019-02709-7.
Pełny tekst źródłaSun, Zhengxiang, Rui Wang, Vitaly Edwardovich Matulis i Korchak Vladimir. "Structure, Synthesis, and Catalytic Performance of Emerging MXene-Based Catalysts". Molecules 29, nr 6 (14.03.2024): 1286. http://dx.doi.org/10.3390/molecules29061286.
Pełny tekst źródłaMitra, Suchareeta, Harry W. Jarrett i Luis A. Jurado. "High-performance catalytic chromatography". Journal of Chromatography A 1076, nr 1-2 (maj 2005): 71–82. http://dx.doi.org/10.1016/j.chroma.2005.04.019.
Pełny tekst źródłaNurhadi, Mukhamad, Ratna Kusumawardani i Hadi Nur. "Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant". Bulletin of Chemical Reaction Engineering & Catalysis 13, nr 1 (2.04.2018): 113. http://dx.doi.org/10.9767/bcrec.13.1.1171.113-118.
Pełny tekst źródłaCheong, Ying-Wai, Ka-Lun Wong, Boon Seng Ooi, Tau Chuan Ling, Fitri Khoerunnisa i Eng-Poh Ng. "Effects of Synthesis Parameters on Crystallization Behavior of K-MER Zeolite and Its Morphological Properties on Catalytic Cyanoethylation Reaction". Crystals 10, nr 2 (23.01.2020): 64. http://dx.doi.org/10.3390/cryst10020064.
Pełny tekst źródłaLiu, Yuxi, Guofeng Zhao, Dingsheng Wang i Yadong Li. "Heterogeneous catalysis for green chemistry based on nanocrystals". National Science Review 2, nr 2 (30.04.2015): 150–66. http://dx.doi.org/10.1093/nsr/nwv014.
Pełny tekst źródłaLiu, Yanbiao, Xiang Liu, Shengnan Yang, Fang Li, Chensi Shen, Chunyan Ma, Manhong Huang i Wolfgang Sand. "Ligand-Free Nano-Au Catalysts on Nitrogen-Doped Graphene Filter for Continuous Flow Catalysis". Nanomaterials 8, nr 9 (5.09.2018): 688. http://dx.doi.org/10.3390/nano8090688.
Pełny tekst źródłaSang, Chao, i Yunjun Luo. "Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer". Polymers 16, nr 15 (24.07.2024): 2107. http://dx.doi.org/10.3390/polym16152107.
Pełny tekst źródłaGu, Shifei, Chengheng Huang, Xiaorong Han, Qiuju Qin, Donghai Mo, Chen Li, Yuhua You, Lihui Dong i Bin Li. "Improvement of NH3-SCR Performance by Exposing Different Active Components in a VCeMn/Ti Catalytic System". Catalysts 14, nr 2 (7.02.2024): 131. http://dx.doi.org/10.3390/catal14020131.
Pełny tekst źródłaLiu, Tao, Lirui Mao, Facun Jiao, Chengli Wu, Mingdong Zheng i Hanxu Li. "Catalytic performance of Na/Ca-based fluxes for coal char gasification". Green Processing and Synthesis 11, nr 1 (1.01.2022): 204–17. http://dx.doi.org/10.1515/gps-2022-0020.
Pełny tekst źródłaChen, Huihui, Mei Yang, Yuan Liu, Jun Yue i Guangwen Chen. "Influence of Co3O4 Nanostructure Morphology on the Catalytic Degradation of p-Nitrophenol". Molecules 28, nr 21 (2.11.2023): 7396. http://dx.doi.org/10.3390/molecules28217396.
Pełny tekst źródłaChristiansen, L. "Performance Evaluation of Catalytic Processes". Computers & Chemical Engineering 21, nr 1-2 (1997): S1179—S1184. http://dx.doi.org/10.1016/s0098-1354(97)00209-3.
Pełny tekst źródłaChristiansen, Lars J., Nina Bruniche-Olsen, Jack H. Carstensen i Michael Schrøder. "Performance evaluation of catalytic processes". Computers & Chemical Engineering 21 (maj 1997): S1179—S1184. http://dx.doi.org/10.1016/s0098-1354(97)87662-4.
Pełny tekst źródłaYang, Zhao, Huaze Zhu, Huijuan Zhu, Yanbing Wang, Liming Che, Zhiqing Yang, Jun Fang, Qi-Hui Wu i Bing Hui Chen. "Insights into the role of nanoalloy surface compositions toward catalytic acetone hydrogenation". Chemical Communications 54, nr 60 (2018): 8351–54. http://dx.doi.org/10.1039/c8cc04293d.
Pełny tekst źródłaJi, Fengtong, Ben Wang i Li Zhang. "Light-Triggered Catalytic Performance Enhancement Using Magnetic Nanomotor Ensembles". Research 2020 (8.07.2020): 1–11. http://dx.doi.org/10.34133/2020/6380794.
Pełny tekst źródłaOdularu, Ayodele Temidayo. "Bismuth as Smart Material and Its Application in the Ninth Principle of Sustainable Chemistry". Journal of Chemistry 2020 (22.07.2020): 1–15. http://dx.doi.org/10.1155/2020/9802934.
Pełny tekst źródłaShukla, Vinayak, i Prof Yogesh Tembhurne. "A Review on Performance Enhancement of Catalytic Conveter by Making Geometrical Changes". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30.06.2018): 629–34. http://dx.doi.org/10.31142/ijtsrd13058.
Pełny tekst źródłaQing, Shaojun, Xiaoning Hou, Yajie Liu, Lindong Li, Xiang Wang, Zhixian Gao i Weibin Fan. "Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming". Chemical Communications 54, nr 86 (2018): 12242–45. http://dx.doi.org/10.1039/c8cc06600k.
Pełny tekst źródłaMannu, Rashmi, Vaithinathan Karthikeyan, Murugendrappa Malalkere Veerappa, Vellaisamy A. L. Roy, Anantha-Iyengar Gopalan, Gopalan Saianand, Prashant Sonar i in. "Facile Use of Silver Nanoparticles-Loaded Alumina/Silica in Nanofluid Formulations for Enhanced Catalytic Performance toward 4-Nitrophenol Reduction". International Journal of Environmental Research and Public Health 18, nr 6 (15.03.2021): 2994. http://dx.doi.org/10.3390/ijerph18062994.
Pełny tekst źródłaGorbanev, Yury, Yannick Engelmann, Kevin van’t Veer, Evgenii Vlasov, Callie Ndayirinde, Yanhui Yi, Sara Bals i Annemie Bogaerts. "Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms". Catalysts 11, nr 10 (13.10.2021): 1230. http://dx.doi.org/10.3390/catal11101230.
Pełny tekst źródłaLi, Xuan, Detre Teschner, Verena Streibel, Thomas Lunkenbein, Liudmyla Masliuk, Teng Fu, Yuanqing Wang i in. "How to control selectivity in alkane oxidation?" Chemical Science 10, nr 8 (2019): 2429–43. http://dx.doi.org/10.1039/c8sc04641g.
Pełny tekst źródłaZhang, Jing-Yu, Yi Lu, Jin-Ku Liu i Hao Jiang. "Mosaic structure effect and superior catalytic performance of AgBr/Ag2MoO4 composite materials". RSC Advances 6, nr 97 (2016): 94771–79. http://dx.doi.org/10.1039/c6ra17433g.
Pełny tekst źródłaHuang, Tiefan, Guan Sheng, Priyanka Manchanda, Abdul H. Emwas, Zhiping Lai, Suzana Pereira Nunes i Klaus-Viktor Peinemann. "Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis". Science Advances 5, nr 11 (listopad 2019): eaax6976. http://dx.doi.org/10.1126/sciadv.aax6976.
Pełny tekst źródłaWang, Yuwei, Jian He, Yipeng Zang, Changbao Zhao, Miaomiao Di i Bin Wang. "Controlled synthesis of Mo2C micron flowers via vapor–liquid–solid method as enhanced electrocatalyst for hydrogen evolution reaction". RSC Advances 13, nr 37 (2023): 26144–47. http://dx.doi.org/10.1039/d3ra04813f.
Pełny tekst źródłaFatimah, Is. "Metal Oxide and Metal Complex Immobilization Modified Smectite Clay For Green Catalysis and Photo-Catalysis Applications: A Mini Review". Chemical 3, nr 1 (6.01.2018): 54–59. http://dx.doi.org/10.20885/ijcr.vol2.iss1.art7.
Pełny tekst źródłaIsaeva, Vera I., Oleg M. Nefedov i Leonid M. Kustov. "Metal–Organic Frameworks-Based Catalysts for Biomass Processing". Catalysts 8, nr 9 (31.08.2018): 368. http://dx.doi.org/10.3390/catal8090368.
Pełny tekst źródłaHou, Zhiquan, Mengwei Hua, Yuxi Liu, Jiguang Deng, Xin Zhou, Ying Feng, Yifan Li i Hongxing Dai. "Exploring Intermetallic Compounds: Properties and Applications in Catalysis". Catalysts 14, nr 8 (18.08.2024): 538. http://dx.doi.org/10.3390/catal14080538.
Pełny tekst źródłaXu, Beibei, Wei Zhong, Zhenhong Wei, Hailong Wang, Jian Liu, Li Wu, Yonggang Feng i Xiaoming Liu. "Iron(iii) complexes of multidentate pyridinyl ligands: synthesis, characterization and catalysis of the direct hydroxylation of benzene". Dalton Trans. 43, nr 41 (2014): 15337–45. http://dx.doi.org/10.1039/c4dt02032d.
Pełny tekst źródłaLi, Mian, Wanling Liu i Jiahui Zou. "Single-Atom Catalysts: Synthesis, Performance and Applications". Highlights in Science, Engineering and Technology 58 (12.07.2023): 272–79. http://dx.doi.org/10.54097/hset.v58i.10103.
Pełny tekst źródłaLiu, Xin, Changgong Meng i Yu Han. "Understanding the Enhanced Catalytic Performance of Ultrafine Transition Metal Nanoparticles–Graphene Composites". Journal of Molecular and Engineering Materials 03, nr 01n02 (marzec 2015): 1540002. http://dx.doi.org/10.1142/s225123731540002x.
Pełny tekst źródłaAlhokbany, Norah, Tansir Ahamad, Saad M. Alshehri i Jahangeer Ahmed. "Reduced Graphene Oxide Supported Zinc Tungstate Nanoparticles as Proficient Electro-Catalysts for Hydrogen Evolution Reactions". Catalysts 12, nr 5 (9.05.2022): 530. http://dx.doi.org/10.3390/catal12050530.
Pełny tekst źródłaWang, Longlu, Kun Wang i Weihao Zheng. "Moiré Superlattices of Two-Dimensional Materials toward Catalysis". Catalysts 14, nr 8 (10.08.2024): 519. http://dx.doi.org/10.3390/catal14080519.
Pełny tekst źródłaLayla Sihombing, Junifa, Herlinawati Herlinawati, Ahmad Nasir Pulungan, Agus Kembaren, Gimelliya Saragih, Harmileni Harmileni, Rahayu Rahayu i Ary Anggara Wibowo. "Unveiling ZrO2/natural zeolite catalytic performance on hydrocracking palm oil mill effluent residue". Jurnal Pendidikan Kimia 15, nr 2 (30.08.2023): 100–110. http://dx.doi.org/10.24114/jpkim.v15i2.43324.
Pełny tekst źródłaDai, Rui Qi, Ya Zhong Chen, Fang Jin i Peng Cui. "Hydrogen Production from Ethanol Steam Reforming over Co-Ni/CeO2 Catalysts Prepared by Coprecipitation". Advanced Materials Research 724-725 (sierpień 2013): 729–34. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.729.
Pełny tekst źródłaRong, Xing, Qing Cao, Yan Gao, Tao Luan, Yanteng Li, Quanyou Man, Zhanchao Zhang i Baoming Chen. "Synergistic Catalytic Performance of Toluene Degradation Based on Non-Thermal Plasma and Mn/Ce-Based Bimetal-Organic Frameworks". Molecules 27, nr 21 (29.10.2022): 7363. http://dx.doi.org/10.3390/molecules27217363.
Pełny tekst źródłaAftab, Alina, Katerina Chagoya, Alan Felix, Richard Blair i Nina Orlovskaya. "Catalytic performance of porous Yb2O3 sesquioxide". Advances in Applied Ceramics 120, nr 3 (3.04.2021): 175–86. http://dx.doi.org/10.1080/17436753.2021.1919359.
Pełny tekst źródłaSamuel, S., D. Morrey, M. Fowkes, D. H. C. Taylor, C. P. Garner i L. Austin. "Real-world performance of catalytic converters". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, nr 7 (1.07.2005): 881–88. http://dx.doi.org/10.1243/095440705x28349.
Pełny tekst źródłaYAMAMOTO, Makoto, Kazunori TAKEUCHI, Tomio SUGIMOTO, Taiichi OKUMURA i Mazumi ITAYA. "225 Performance of catalytic filter bag". Proceedings of the Symposium on Environmental Engineering 2005.15 (2005): 198–99. http://dx.doi.org/10.1299/jsmeenv.2005.15.198.
Pełny tekst źródłaTHOMAS, J. "Controlling the catalytic performance of solids". Solid State Ionics 32-33 (luty 1989): 869–71. http://dx.doi.org/10.1016/0167-2738(89)90369-x.
Pełny tekst źródłaMatros, Yu Sh. "Unsteady performance of heterogeneous catalytic reactions". Reaction Kinetics and Catalysis Letters 35, nr 1-2 (marzec 1987): 425–35. http://dx.doi.org/10.1007/bf02062177.
Pełny tekst źródłaKnauss, Steven, Laura Guevara i Mark Atwater. "Enhanced Performance of Bimetallic Co-Pd Catalysts Prepared by Mechanical Alloying". Metals 9, nr 3 (16.03.2019): 335. http://dx.doi.org/10.3390/met9030335.
Pełny tekst źródłaHe, Ming-Yuan. "The development of catalytic cracking catalysts: acidic property related catalytic performance". Catalysis Today 73, nr 1-2 (kwiecień 2002): 49–55. http://dx.doi.org/10.1016/s0920-5861(01)00517-x.
Pełny tekst źródłaGao, Yan, Wenchao Jiang, Tao Luan, Hui Li, Wenke Zhang, Wenchen Feng i Haolin Jiang. "High-Efficiency Catalytic Conversion of NOx by the Synergy of Nanocatalyst and Plasma: Effect of Mn-Based Bimetallic Active Species". Catalysts 9, nr 1 (18.01.2019): 103. http://dx.doi.org/10.3390/catal9010103.
Pełny tekst źródłaLuo, Qun-xing, Min Ji, Sang-Eon Park, Ce Hao i Yan-qin Li. "PdCl2 immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene". RSC Advances 6, nr 39 (2016): 33048–54. http://dx.doi.org/10.1039/c6ra02077a.
Pełny tekst źródłaLee, Jeyeong, Seonghyeon Park, Dongwon Kim, Young-A. Lee i Ok-Sang Jung. "Hexafluorosilicate anion in the formation of a coordination cage: anion competition". Inorganic Chemistry Frontiers 7, nr 7 (2020): 1546–52. http://dx.doi.org/10.1039/c9qi01581g.
Pełny tekst źródłaChen, Qiang, Mingming Mao, Min Gao, Yongqi Liu, Junrui Shi i Jia Li. "Design and Performance Investigation of a Compact Catalytic Reactor Integrated with Heat Recuperator". Energies 15, nr 2 (9.01.2022): 447. http://dx.doi.org/10.3390/en15020447.
Pełny tekst źródłaXu, Lian‐Hua, Weiping Liu i Kai Liu. "Single Atom Environmental Catalysis: Influence of Supports and Coordination Environments". Advanced Functional Materials, 27.08.2023. http://dx.doi.org/10.1002/adfm.202304468.
Pełny tekst źródłaPrintz, Gaël, Dmytro Ryzhakov, Béatrice Jacques, Samir Messouadi, Francoise Dumas, Franck Le Bideau, Samuel Dagorne i Christophe Gourlaouen. "First Use of Thiosquaramides as Polymerization Catalysts: Controlled ROP of Lactide Implicating Key Secondary Interactions for Optimal Performance". ChemCatChem, 6.10.2023. http://dx.doi.org/10.1002/cctc.202301207.
Pełny tekst źródła