Artykuły w czasopismach na temat „Catalysie”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Catalysie”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhao, Xiaodan, i Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges". Synlett 32, nr 13 (11.05.2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Pełny tekst źródłaDagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, nr 18 (28.06.2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Pełny tekst źródłaDing, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou i Shihu Jia. "Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols". Synthesis 54, nr 07 (2.12.2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.
Pełny tekst źródłaLi, Feng, i Hao Li. "Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions". Innovation & Technology Advances 2, nr 1 (12.03.2024): 1–13. http://dx.doi.org/10.61187/ita.v2i1.54.
Pełny tekst źródłaShi, Chunjie, Xiaofeng Yu, Wei Wang, Haibing Wu, Ai Zhang i Shengjin Liu. "The Activity and Cyclic Catalysis of Synthesized Iron-Supported Zr/Ti Solid Acid Catalysts in Methyl Benzoate Compounds". Catalysts 13, nr 6 (2.06.2023): 971. http://dx.doi.org/10.3390/catal13060971.
Pełny tekst źródłaClerici, Mario G. "Zeolites for Fine Chemical Production State of Art and Perspectives". Eurasian Chemico-Technological Journal 3, nr 4 (10.07.2017): 231. http://dx.doi.org/10.18321/ectj573.
Pełny tekst źródłaZhang, Meng. "A Novel Energy Band Match Method and a Highly Efficient CuO–Co3O4@SiO2 Catalyst for Dimethyl Carbonate Synthesis from CO2". Science of Advanced Materials 13, nr 1 (1.01.2021): 115–22. http://dx.doi.org/10.1166/sam.2021.3848.
Pełny tekst źródłaJankovič, Ľuboš, i Peter Komadel. "Catalytic Properties of a Heated Ammonium-Saturated Dioctahedral Smectite". Collection of Czechoslovak Chemical Communications 65, nr 9 (2000): 1527–36. http://dx.doi.org/10.1135/cccc20001527.
Pełny tekst źródłaZhuang, Huimin, Bili Chen, Wenjin Cai, Yanyan Xi, Tianxu Ye, Chuangye Wang i Xufeng Lin. "UiO-66-supported Fe catalyst: a vapour deposition preparation method and its superior catalytic performance for removal of organic pollutants in water". Royal Society Open Science 6, nr 4 (kwiecień 2019): 182047. http://dx.doi.org/10.1098/rsos.182047.
Pełny tekst źródłaMotokura, Ken, i Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation". Synthesis 53, nr 18 (9.04.2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Pełny tekst źródłaLukey, CA, MA Long i JL Garnett. "Aromatic Hydrogen Isotope Exchange Reactions Catalyzed by Iridium Complexes in Aqueous Solution". Australian Journal of Chemistry 48, nr 1 (1995): 79. http://dx.doi.org/10.1071/ch9950079.
Pełny tekst źródłaHolzwarth, Arnold, i Wilhelm F. Maier. "Catalytic Phenomena in Combinatorial Libraries of Heterogeneous Catalysts". Platinum Metals Review 44, nr 1 (1.01.2000): 16–21. http://dx.doi.org/10.1595/003214000x4411621.
Pełny tekst źródłaZhou, Wen-Jun, Da-Gang Yu, Yi-Han Zhang, Yong-Yuan Gui i Liang Sun. "Merging Transition-Metal Catalysis with Photoredox Catalysis: An Environmentally Friendly Strategy for C–H Functionalization". Synthesis 50, nr 17 (8.08.2018): 3359–78. http://dx.doi.org/10.1055/s-0037-1610222.
Pełny tekst źródłaMiceli, Mariachiara, Patrizia Frontera, Anastasia Macario i Angela Malara. "Recovery/Reuse of Heterogeneous Supported Spent Catalysts". Catalysts 11, nr 5 (1.05.2021): 591. http://dx.doi.org/10.3390/catal11050591.
Pełny tekst źródłaZhai, Peng, Geng Sun, Qingjun Zhu i Ding Ma. "Fischer-Tropsch synthesis nanostructured catalysts: understanding structural characteristics and catalytic reaction". Nanotechnology Reviews 2, nr 5 (1.10.2013): 547–76. http://dx.doi.org/10.1515/ntrev-2013-0025.
Pełny tekst źródłaCottone, Grazia, Sergio Giuffrida, Stefano Bettati, Stefano Bruno, Barbara Campanini, Marialaura Marchetti, Stefania Abbruzzetti i in. "More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function". Catalysts 9, nr 12 (4.12.2019): 1024. http://dx.doi.org/10.3390/catal9121024.
Pełny tekst źródłaPatil, Siddappa A., Shivaputra A. Patil i Renukadevi Patil. "Magnetic Nanoparticles Supported Carbene and Amine Based Metal Complexes in Catalysis". Journal of Nano Research 42 (lipiec 2016): 112–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.42.112.
Pełny tekst źródłaTang, Xiaolong, Xianmang Xu, Honghong Yi, Chen Chen i Chuan Wang. "Recent Developments of Electrochemical Promotion of Catalysis in the Techniques of DeNOx". Scientific World Journal 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/463160.
Pełny tekst źródłaGao, Yan, Wenchao Jiang, Tao Luan, Hui Li, Wenke Zhang, Wenchen Feng i Haolin Jiang. "High-Efficiency Catalytic Conversion of NOx by the Synergy of Nanocatalyst and Plasma: Effect of Mn-Based Bimetallic Active Species". Catalysts 9, nr 1 (18.01.2019): 103. http://dx.doi.org/10.3390/catal9010103.
Pełny tekst źródłaLiu, Jingyue. "Advanced Electron Microscopy Characterization of Nanostructured Heterogeneous Catalysts". Microscopy and Microanalysis 10, nr 1 (22.01.2004): 55–76. http://dx.doi.org/10.1017/s1431927604040310.
Pełny tekst źródłaZhang, Xiaolong, Shilei Jin, Yuhan Zhang, Liyuan Wang, Yang Liu i Qian Duan. "One-Pot Facile Synthesis of Noble Metal Nanoparticles Supported on rGO with Enhanced Catalytic Performance for 4-Nitrophenol Reduction". Molecules 26, nr 23 (30.11.2021): 7261. http://dx.doi.org/10.3390/molecules26237261.
Pełny tekst źródłaBOUSBA, DALILA, CHAFIA SOBHI, AMNA ZOUAOUI i SOUAD BOUASLA. "Synthesis of activated carbon sand their application in the synthesis of monometallic and bimetallic supported catalysts". Algerian Journal of Signals and Systems 5, nr 4 (15.12.2020): 190–96. http://dx.doi.org/10.51485/ajss.v5i4.116.
Pełny tekst źródłaXu, Jun Qiang, Fang Guo, Shu Shu Zou i Xue Jun Quan. "Optimization of the Catalytic Wet Peroxide Oxidation of Phenol over the Fe/NH4Y Catalyst". Materials Science Forum 694 (lipiec 2011): 640–44. http://dx.doi.org/10.4028/www.scientific.net/msf.694.640.
Pełny tekst źródłaChen, Jianfeng, Xing Gong, Jianyu Li, Yingkun Li, Jiguo Ma, Chengkang Hou, Guoqing Zhao, Weicheng Yuan i Baoguo Zhao. "Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction". Science 360, nr 6396 (28.06.2018): 1438–42. http://dx.doi.org/10.1126/science.aat4210.
Pełny tekst źródłaGaliwango, Emmanuel, James Butler i Samira Lotfi. "A Review of Catalyst Integration in Hydrothermal Gasification". Fuels 5, nr 3 (23.08.2024): 375–93. http://dx.doi.org/10.3390/fuels5030022.
Pełny tekst źródłaLi, Siyi, Shuo Cheng i Jeffrey S. Cross. "Homogeneous and Heterogeneous Catalysis Impact on Pyrolyzed Cellulose to Produce Bio-Oil". Catalysts 10, nr 2 (3.02.2020): 178. http://dx.doi.org/10.3390/catal10020178.
Pełny tekst źródłaMd Ali, Siti Aminah, Ku Halim Ku Hamid i Kamariah Noor Ismail. "Effect of Ni/Co Ratio on Bimetallic Oxide Supported Silica Catalyst in CO2 Methanation". Applied Mechanics and Materials 802 (październik 2015): 431–36. http://dx.doi.org/10.4028/www.scientific.net/amm.802.431.
Pełny tekst źródłaChen, Huihui, Zhenhua Dong i Jun Yue. "Advances in Microfluidic Synthesis of Solid Catalysts". Powders 1, nr 3 (4.08.2022): 155–83. http://dx.doi.org/10.3390/powders1030011.
Pełny tekst źródłaMa, Yubo, Zhixian Gao, Tao Yuan i Tianfu Wang. "Kinetics of Dicyclopentadiene Hydroformylation over Rh–SiO2 Catalysts". Progress in Reaction Kinetics and Mechanism 42, nr 2 (maj 2017): 191–99. http://dx.doi.org/10.3184/146867817x14821527549013.
Pełny tekst źródłaGamaliia, Vira, Artem Zabuga i Gennadii Zabuga. "On the History of Developing Catalysis in Ukraine (1850s–1980s)". Acta Baltica Historiae et Philosophiae Scientiarum 11, nr 2 (15.12.2023): 76–92. http://dx.doi.org/10.11590/abhps.2023.2.04.
Pełny tekst źródłaChen, Qi, Zhigang Qi, Zhaoxuan Wang, Ziqi Song i Weimin Wang. "Recent Advances in and Challenges with Fe-Based Metallic Glasses for Catalytic Efficiency: Environment and Energy Fields". Materials 17, nr 12 (14.06.2024): 2922. http://dx.doi.org/10.3390/ma17122922.
Pełny tekst źródłaLu, Dongsheng, Yufa Feng, Zitian Ding, Jinyun Liao, Xibin Zhang, Hui-Ru Liu i Hao Li. "MoO3-Doped MnCo2O4 Microspheres Consisting of Nanosheets: An Inexpensive Nanostructured Catalyst to Hydrolyze Ammonia Borane for Hydrogen Generation". Nanomaterials 9, nr 1 (24.12.2018): 21. http://dx.doi.org/10.3390/nano9010021.
Pełny tekst źródłaTrigoura, Leslie, Yalan Xing i Bhanu P. S. Chauhan. "Recyclable Catalysts for Alkyne Functionalization". Molecules 26, nr 12 (9.06.2021): 3525. http://dx.doi.org/10.3390/molecules26123525.
Pełny tekst źródłaVayenas, C. G., S. Bebelis, I. V. Yentekakis, P. Tsiakaras i H. Karasali. "Non-Faradaic Electrochemical Modification of Catalytic Activity". Platinum Metals Review 34, nr 3 (1.07.1990): 122–30. http://dx.doi.org/10.1595/003214090x343122130.
Pełny tekst źródłaDadashi-Silab, Sajjad, i Krzysztof Matyjaszewski. "Iron Catalysts in Atom Transfer Radical Polymerization". Molecules 25, nr 7 (3.04.2020): 1648. http://dx.doi.org/10.3390/molecules25071648.
Pełny tekst źródłaDu, Yuan-Peng, i Jeremy S. Luterbacher. "Designing Heterogeneous Catalysts for Renewable Catalysis Applications Using Metal Oxide Deposition". CHIMIA International Journal for Chemistry 73, nr 9 (18.09.2019): 698–706. http://dx.doi.org/10.2533/chimia.2019.698.
Pełny tekst źródłaZhou, Hong-Jie, Chun-Lei Song, Li-Ping Si, Xu-Jia Hong i Yue-Peng Cai. "The Development of Catalyst Materials for the Advanced Lithium–Sulfur Battery". Catalysts 10, nr 6 (17.06.2020): 682. http://dx.doi.org/10.3390/catal10060682.
Pełny tekst źródłaLimlamthong, Mutjalin, Nithinart Chitpong i Bunjerd Jongsomjit. "Influence of Phosphoric Acid Modification on Catalytic Properties of γ-χ Al2O3 Catalysts for Dehydration of Ethanol to Diethyl Ether". Bulletin of Chemical Reaction Engineering & Catalysis 14, nr 1 (15.04.2019): 1. http://dx.doi.org/10.9767/bcrec.14.1.2436.1-8.
Pełny tekst źródłaLiang, Wenjun, Xiujuan Shi, Qinglei Li, Sida Ren i Guobin Yin. "Effect of Pd/Ce Loading and Catalyst Components on the Catalytic Abatement of Toluene". Catalysts 12, nr 2 (16.02.2022): 225. http://dx.doi.org/10.3390/catal12020225.
Pełny tekst źródłaPan, Dipika, i Jhuma Ganguly. "Assessment of Chitosan Based Catalyst and their Mode of Action". Current Organocatalysis 6, nr 2 (24.06.2019): 106–38. http://dx.doi.org/10.2174/2213337206666190327174103.
Pełny tekst źródłaFan, Guozhi, Min Wang, Zhenxiao Duan, Minghai Wan i Tao Fang. "Synthesis of Diphenyl Carbonate from Carbon Dioxide, Phenol, and Carbon Tetrachloride Catalysed by ZnCl2 Using Trifluoromethanesulfonic Acid as Functional Co-Catalyst". Australian Journal of Chemistry 65, nr 12 (2012): 1667. http://dx.doi.org/10.1071/ch12115.
Pełny tekst źródłaChen, Haimei, Shaofei Wang, Lilan Huang, Leitao Zhang, Jin Han, Wanzheng Ren, Jian Pan i Jiao Li. "Core-Shell Hierarchical Fe/Cu Bimetallic Fenton Catalyst with Improved Adsorption and Catalytic Performance for Congo Red Degradation". Catalysts 12, nr 11 (4.11.2022): 1363. http://dx.doi.org/10.3390/catal12111363.
Pełny tekst źródłaGates, Bruce C. "Concluding remarks: progress toward the design of solid catalysts". Faraday Discussions 188 (2016): 591–602. http://dx.doi.org/10.1039/c6fd00134c.
Pełny tekst źródłaZhang, Yujun, Hui Teng, Junpeng Chen, Rui Xia, Yujun Zhou, Kunlin Xie i Zhiyong Chen. "Application of Palladium Single Atoms in C−C Coupling Reactions of Pharmaceutical Synthesis". Advances in Computer and Engineering Technology Research 1, nr 1 (8.12.2023): 192. http://dx.doi.org/10.61935/acetr.1.1.2023.p192.
Pełny tekst źródłaHou, Zhiquan, Mengwei Hua, Yuxi Liu, Jiguang Deng, Xin Zhou, Ying Feng, Yifan Li i Hongxing Dai. "Exploring Intermetallic Compounds: Properties and Applications in Catalysis". Catalysts 14, nr 8 (18.08.2024): 538. http://dx.doi.org/10.3390/catal14080538.
Pełny tekst źródłaOrtega-Caballero, Fernando, i Mikael Bols. "Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases". Canadian Journal of Chemistry 84, nr 4 (1.04.2006): 650–58. http://dx.doi.org/10.1139/v06-039.
Pełny tekst źródłaXu, Jun Qiang, Fang Guo, Jun Li, Xiu Zhi Ran i Yan Tang. "Synthesis of the Cu/Flokite Catalysts and their Performances for Catalytic Wet Peroxide Oxidation of Phenol". Advanced Materials Research 560-561 (sierpień 2012): 869–72. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.869.
Pełny tekst źródłaCrozier, P. A. "In Situ Characterization of Dynamic Changes in the Microstructure and Chemistry of Catalysts". Microscopy and Microanalysis 7, S2 (sierpień 2001): 1058–59. http://dx.doi.org/10.1017/s1431927600031366.
Pełny tekst źródłaDabhane, Harshal, Suresh Ghotekar, Pawan Tambade, Shreyas Pansambal, Rajeshwari Oza i Vijay Medhane. "MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations". European Journal of Chemistry 12, nr 1 (31.03.2021): 86–108. http://dx.doi.org/10.5155/eurjchem.12.1.86-108.2060.
Pełny tekst źródłaJia, Wenzhi, Xia Cai, Yong Zhang, Xiaohua Zuo, Juanjuan Yuan, Xinhua Liu, Zhirong Zhu i Xiangyi Deng. "Catalytic Dehydrofluorination of Hydrofluoroalkanes to Fluorinated Olifein Over Ni/AlF3 Catalysts". MATEC Web of Conferences 238 (2018): 03004. http://dx.doi.org/10.1051/matecconf/201823803004.
Pełny tekst źródła