Gotowa bibliografia na temat „Catalysie”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Catalysie”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Catalysie"
Zhao, Xiaodan, i Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges". Synlett 32, nr 13 (11.05.2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Pełny tekst źródłaDagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, nr 18 (28.06.2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Pełny tekst źródłaDing, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou i Shihu Jia. "Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols". Synthesis 54, nr 07 (2.12.2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.
Pełny tekst źródłaLi, Feng, i Hao Li. "Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions". Innovation & Technology Advances 2, nr 1 (12.03.2024): 1–13. http://dx.doi.org/10.61187/ita.v2i1.54.
Pełny tekst źródłaShi, Chunjie, Xiaofeng Yu, Wei Wang, Haibing Wu, Ai Zhang i Shengjin Liu. "The Activity and Cyclic Catalysis of Synthesized Iron-Supported Zr/Ti Solid Acid Catalysts in Methyl Benzoate Compounds". Catalysts 13, nr 6 (2.06.2023): 971. http://dx.doi.org/10.3390/catal13060971.
Pełny tekst źródłaClerici, Mario G. "Zeolites for Fine Chemical Production State of Art and Perspectives". Eurasian Chemico-Technological Journal 3, nr 4 (10.07.2017): 231. http://dx.doi.org/10.18321/ectj573.
Pełny tekst źródłaZhang, Meng. "A Novel Energy Band Match Method and a Highly Efficient CuO–Co3O4@SiO2 Catalyst for Dimethyl Carbonate Synthesis from CO2". Science of Advanced Materials 13, nr 1 (1.01.2021): 115–22. http://dx.doi.org/10.1166/sam.2021.3848.
Pełny tekst źródłaJankovič, Ľuboš, i Peter Komadel. "Catalytic Properties of a Heated Ammonium-Saturated Dioctahedral Smectite". Collection of Czechoslovak Chemical Communications 65, nr 9 (2000): 1527–36. http://dx.doi.org/10.1135/cccc20001527.
Pełny tekst źródłaZhuang, Huimin, Bili Chen, Wenjin Cai, Yanyan Xi, Tianxu Ye, Chuangye Wang i Xufeng Lin. "UiO-66-supported Fe catalyst: a vapour deposition preparation method and its superior catalytic performance for removal of organic pollutants in water". Royal Society Open Science 6, nr 4 (kwiecień 2019): 182047. http://dx.doi.org/10.1098/rsos.182047.
Pełny tekst źródłaMotokura, Ken, i Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation". Synthesis 53, nr 18 (9.04.2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Pełny tekst źródłaRozprawy doktorskie na temat "Catalysie"
Grieco, Francesco. "Le rôle de la poussière carbonée dans le milieu interstellaire en tant que catalyseur pour la formation de molécules et la croissance des grains". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1306.
Pełny tekst źródłaThis Thesis presents a comprehensive study of the interaction between dust grains andvarious gas-phase species in the ISM. The main results involve the use of surfaces likeices and coronene, a surface that resembles polycyclic aromatic hydrocarbons (PAHs),with gas-phase H and O elements. We investigate how dust grains can catalyze the formation of new molecules through processes like adsorption, diffusion, surface reactions and desorption in typical ISM conditions.The Thesis includes three experimental Chapters (4, 5 and 6), performed at LERMACYUby using the FORMOLISM setup, that are complemented by two theoretical studies(Chapters 8 and 9), conducted with Cloudy and Nautilus codes at UGent. The experiments focus on the role that different dust grain surfaces and ice layers have onthe Binding Energies (BEs) of molecules (Chapter 4), on the experimental formation ofH2 on coronene up to 250 K (Chapter 5) and on the formation of solid water on dustat temperatures up to 85 K (Chapter 6). Several astrophysical implications are alsodiscussed.The results presented in Chapter 5 show how H2 can form in molecular clouds with dusttemperatures >20 K and this is extremely relevant to explain the efficient H2 and starformation in high redshift galaxies. Chapter 6 gives new insights on the formation oficy mantles that could be forming at higher temperature than previously demonstrated,being a significant way to explain the gas-phase elemental O depletion observed in suchconditions. Moreover, the disappearance of PAHs in the transition from diffuse to denseclouds could be explained by the dust grains starting to be covered by ice layers. InChapter 8 we study the effect of the high temperature experimental H2 formation onPAHs on the location of the dissociation front (DF) in a classical PDR picture, bymodelling it with Cloudy. From a basic implementation of the experimental results ofChapter 5 in the code, it has been challenging to quantify such effect. This underlineshow a lot of work still needs to be done on models to better match observations. InChapter 9 some questions regarding O depletion in translucent clouds and grain growthintroduced in Chapter 6 are addressed with Nautilus. By using an innovative strategy,we were able to reproduce C and O depletions in translucent cloud conditions by lockingthem in two separate surface species upon adsorption, reproducing the molecular structure ratio of organic carbonates.This Thesis shows the incredible catalytic nature of PAHs and their capacity to enablechemisorption processes for the formation of molecules at high dust temperatures. Thisis an important result that can be linked to the new discoveries reporting the possibilityof having grain growth at lower nH
Fiske, Thomas Haukli. "Correlation of Catalyst Morphology with Attrition Resistance and Catalytic Activity of Fischer-Tropsch Catalysts". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22778.
Pełny tekst źródłaPaliga, James Francis. "Developing Earth-abundant metal-catalysts for hydrofunctionalisation". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31115.
Pełny tekst źródłaLarge, Benjamin. "Activation sélective de naphtalènes et synthèse d'architectures polycycliques étendues". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV070/document.
Pełny tekst źródłaBecause naphthalene has recently emerged as a fundamental platform in medicinal chemistry, the development of methodologies leading to diversely functionalised naphthalene-based platforms has become a prime concern of the scientific community. Indeed, experimental conditions previously optimised for benzene and other aromatic rings cannot always be applied to naphthalene. These methods can sometimes lead to different results, as a consequence of the lower aromaticity of the naphthalene core.In this context, this thesis is dedicated to the naphthalene and its derivatives. Various methods to selectively functionalise the different positions of the naphthalene core and synthetic pathways to extended polycyclic architectures were developed.Next, we focused on naphthalene precursors, especially on tetralones. Using a strategy involving a transient directing group, the position 8 of these bicycles was successfully arylated and the resulting compounds were successfully converted into other polycyclic platforms. In addition, DFT calculation have been used to explain the regioselectivity observed during the synthesis of extended fluorenones, and to study the mechanism of directed arylation of tetralones
Meyer, Simon [Verfasser]. "Carbide Materials as Catalysts and Catalyst Supports for Applications in Water Electrolysis and in Heterogeneous Catalysis / Simon Meyer". München : Verlag Dr. Hut, 2014. http://d-nb.info/1058284967/34.
Pełny tekst źródłaHruby, Sarah Lynn. "Catalytic domains in porous catalysts". [Ames, Iowa : Iowa State University], 2009.
Znajdź pełny tekst źródłaMcGregor, James. "Heterogeneous catalytic hydrogenation and dehydrogenation : catalysts and catalytic processes". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612796.
Pełny tekst źródłaRichardson, John Michael. "Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons". Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22704.
Pełny tekst źródłaGill, Christopher Stephen. "Novel hybrid organic/inorganic single-sited catalysts and supports for fine chemical and pharmaceutical intermediate synthesis". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28218.
Pełny tekst źródłaCommittee Chair: Jones, Christopher; Committee Member: Agrawal, Pradeep; Committee Member: Teja, Amyn; Committee Member: Weck, Marcus; Committee Member: Zhang, John.
Nguyen, Joseph Vu. "Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalysts". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6860.
Pełny tekst źródłaKsiążki na temat "Catalysie"
International Symposium on Catalyst Deactivation (8th 1999 Brugge, Belgium). Catalyst deactivation 1999: Proceedings of the 8th International Symposium, Brugge, Belgium, October 10-13, 1999. Amsterdam: Elsevier, 1999.
Znajdź pełny tekst źródła1937-, Anderson James A., i Fernández Garcia Marcos, red. Supported metals in catalysis. London: Imperial College Press, 2005.
Znajdź pełny tekst źródłaJ, Thomas W., red. Principles and practice of heterogeneous catalysis. Weinheim: VCH, 1996.
Znajdź pełny tekst źródłaMa, Zhen, i Sheng Dai, red. Heterogeneous Gold Catalysts and Catalysis. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621645.
Pełny tekst źródła1959-, Regalbuto John R., red. Handbook of catalyst preparation. Boca Raton: Taylor & Francis, 2007.
Znajdź pełny tekst źródłaH, Bartholomew Calvin, red. Fundamentals of industrial catalytic processes. Wyd. 2. Hoboken, N.J: Wiley, 2005.
Znajdź pełny tekst źródłaWijngaarden, R. J. Industrial catalysis: Optimizing catalysts and processes. Weinheim: Wiley-VCH, 1998.
Znajdź pełny tekst źródła1934-, Davis Burtron H., i Occelli Mario L. 1942-, red. Fischer-Tropsch synthesis, catalysts and catalysis. Boston: Elsevier, 2007.
Znajdź pełny tekst źródłaFurimsky, Edward. Catalysts for upgrading heavy petroleum feeds. Amsterdam: Elsevier, 2007.
Znajdź pełny tekst źródłaFurimsky, Edward. Catalysts for upgrading heavy petroleum feeds. Amsterdam: Elsevier, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Catalysie"
Gao, Yuanfeng, Hong Lv, Yongwen Sun, Han Yao, Ding Hu i Cunman Zhang. "Enhancement of Acidic HER by Fe Doped CoP with Bimetallic Synergy". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 465–74. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_45.
Pełny tekst źródłaDeng, Jiayao, Xiao Hu, Gnauizhi Xu, Zhanfeng Deng, Lan Yang, Ding Chen, Ming Zhou i Boyuan Tian. "The Preparation of Iridium-Based Catalyst with Different Melting Point-Metal Nitrate and Its OER Performance in Acid Media". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 61–68. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_6.
Pełny tekst źródłaPennington, John. "Catalysts and Catalysis". W An Introduction to Industrial Chemistry, 309–49. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0613-9_12.
Pełny tekst źródłaPennington, J. "Catalysts and Catalysis". W an introduction to Industrial Chemistry, 304–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-6438-6_11.
Pełny tekst źródłaLloyd, Lawrie. "Catalytic Cracking Catalysts". W Handbook of Industrial Catalysts, 169–210. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-49962-8_5.
Pełny tekst źródłaDuan, Lunbo, i Lin Li. "Oxygen Carrier Aided Gasification (OCAG)". W Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed, 79–96. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_5.
Pełny tekst źródłaShao, Z., i Y. H. Deng. "2.1.1 General Principles of Metal/Organocatalyst Dual Catalysis". W Dual Catalysis in Organic Synthesis 2. Stuttgart: Georg Thieme Verlag, 2020. http://dx.doi.org/10.1055/sos-sd-232-00002.
Pełny tekst źródłaBowker, Michael. "The reactive interface". W The Basis and Applications of Heterogenuous Catalysis. Oxford University Press, 1998. http://dx.doi.org/10.1093/hesc/9780198559580.003.0001.
Pełny tekst źródłaEngel, Paul. "2. Making things happen—catalysis". W Enzymes: A Very Short Introduction, 12–26. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198824985.003.0002.
Pełny tekst źródłaHaynes, Anthony. "Transition Metal Catalysed Methanol Carbonylation". W Contemporary Catalysis: Science, Technology, and Applications, 793–822. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781849739900-00793.
Pełny tekst źródłaStreszczenia konferencji na temat "Catalysie"
Zhang, Aihua. "EXPERIMENTAL STUDY ON THE APPLICATION OF MACHINE LEARNING METHOD IN CATALYTIC MATERIALS". W Topics In Chemical & Material Engineering (TCME). Volkson Press, 2023. http://dx.doi.org/10.26480/smmp.01.2023.24.27.
Pełny tekst źródłaFuruya, Tomiaki, Terunobu Hayata, Susumu Yamanaka, Junji Koezuka, Toshiyuki Yoshine i Akio Ohkoshi. "Hybrid Catalytic Combustion for Stationary Gas Turbine: Concept and Small Scale Test Results". W ASME 1987 International Gas Turbine Conference and Exhibition. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/87-gt-99.
Pełny tekst źródłaHui, K. S., Christopher Y. H. Chao, C. W. Kwong i M. P. Wan. "Performance of Transition Metal Ions Exchanged Zeolite 13X in Greenhouse Gas Reduction". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41360.
Pełny tekst źródłaJayasuriya, Jeevan, Arturo Manrique, Reza Fakhrai, Jan Fredriksson i Torsten Fransson. "Experimental Investigations of Catalytic Combustion for High-Pressure Gas Turbine Applications". W ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90986.
Pełny tekst źródłaWu, Quanwen, Wenhua Luo, Daqiao Meng, Jinchun Bao i Jingwen Ba. "High Efficient Detritiation Catalysts for Fusion Safety". W 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81269.
Pełny tekst źródłaKawakami, Takashi, Tomiaki Furuya, Yukio Sasaki, Toshiyuki Yoshine, Yutaka Furuse i Mitsunobu Hoshino. "Feasibility Study on Honeycomb Ceramics for Catalytic Combustor". W ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-41.
Pełny tekst źródłaAktaş, Fatih, Kiran G. Burra i Ashwani K. Gupta. "Polyethylene Terephthalate Gasification Using CO2: Impact of SFCC Catalyst Contact Mode and Amount". W ASME 2024 Power Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/power2024-138167.
Pełny tekst źródłaInoue, Shuhei, Takeshi Nakajima, Kazuya Nomura i Yoshihiro Kikuchi. "Selective Synthesis of Single-Walled Carbon Nanotubes by Blending Catalysts". W ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32524.
Pełny tekst źródłaManrique Carrera, Arturo, Jeevan Jayasuriya i Torsten Fransson. "Staged Lean Catalytic Combustion of Gasified Biomass for Gas Turbine Applications: An Experimental Approach to Investigate Performance of Catalysts". W ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95339.
Pełny tekst źródłaKarkanis, Anastasios N., Pantelis N. Botsaris i Panagiotis D. Sparis. "A Catalyst Surface Control Automation System for Emission Reduction During Cold Start". W ASME 2004 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/icef2004-0865.
Pełny tekst źródłaRaporty organizacyjne na temat "Catalysie"
Olsen, Daniel, Bryan Hackleman i Rodrigo Bauza Tellechaea. PR-179-16207-R01 Oxidation Catalyst Degradation on a 2-Stroke Lean-Burn NG Engine - Washing. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maj 2019. http://dx.doi.org/10.55274/r0011586.
Pełny tekst źródłaStevens i Olsen. PR-179-12214-R01 CO Sensor Experimental Evaluation for Catalyst Health Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2014. http://dx.doi.org/10.55274/r0010827.
Pełny tekst źródłaBadrinarayanan i Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2012. http://dx.doi.org/10.55274/r0010772.
Pełny tekst źródłaOlsen i Neuner. PR-179-12207-R01 Performance Measurements of Oxidation Catalyst on an Exhaust Slipstream. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2013. http://dx.doi.org/10.55274/r0010800.
Pełny tekst źródłaOlsen. PR-179-10203-R01 Characterization of Oxidation Catalyst Performance - VOCs and Temperature Variation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2012. http://dx.doi.org/10.55274/r0010753.
Pełny tekst źródłaSwanson, Dr Larry, i Christopher Samuelson. PR-362-06208-R01 Evaluation of Byproduct Emissions from Gas Turbine SCR Catalyst. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luty 2009. http://dx.doi.org/10.55274/r0010978.
Pełny tekst źródłaDefoort, Willson i Olsen. L51849 Performance Evaluation of Exhaust Catalysts During the Initial Aging on Large Industrial Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2001. http://dx.doi.org/10.55274/r0011213.
Pełny tekst źródłaRioux, Robert M. Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles. Fort Belvoir, VA: Defense Technical Information Center, listopad 2014. http://dx.doi.org/10.21236/ada613847.
Pełny tekst źródłaBauza, Rodrigo, i Daniel Olsen. PR-179-20200-R01 Improved Catalyst Regeneration Process to Increase Poison Removal. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2021. http://dx.doi.org/10.55274/r0012106.
Pełny tekst źródłaDelgass, William Nicholas, Mahdi Abu-Omar, James Caruthers, Fabio Ribeiro, Kendall Thomson i William Schneider. Catalysis Science Initiative: Catalyst Design by Discovery Informatics. Office of Scientific and Technical Information (OSTI), lipiec 2016. http://dx.doi.org/10.2172/1260972.
Pełny tekst źródła