Artykuły w czasopismach na temat „CASCADED BOOST CONVERTERS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CASCADED BOOST CONVERTERS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sundar, T., i S. Sankar. "Modeling and Simulation of Closed Loop Controlled Parallel Cascaded Buck Boost Converter Inverter Based Solar System". International Journal of Power Electronics and Drive Systems (IJPEDS) 6, nr 3 (1.09.2015): 648. http://dx.doi.org/10.11591/ijpeds.v6.i3.pp648-656.
Pełny tekst źródłaKumar, C. Prasanna, i N. Venugopal. "Performance and Stability Analysis of Series-Cascaded, High-Gain, Interleaved Boost Converter for Photovoltaic Applications". Power Electronics and Drives 3, nr 1 (1.06.2018): 85–97. http://dx.doi.org/10.2478/pead-2018-0022.
Pełny tekst źródłaGuo, Ke, Qiang Liu, Xinze Xi, Mingxuan Mao, Yihao Wan i Hao Wu. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions". Energies 13, nr 2 (18.01.2020): 474. http://dx.doi.org/10.3390/en13020474.
Pełny tekst źródłaSalehi, Navid, Herminio Martínez-García i Guillermo Velasco-Quesada. "Modified Cascaded Z-Source High Step-Up Boost Converter". Electronics 9, nr 11 (17.11.2020): 1932. http://dx.doi.org/10.3390/electronics9111932.
Pełny tekst źródłaGhaderi, Davood, i Gokay Bayrak. "A Novel Step-Up Power Converter Configuration for Solar Energy Application". Elektronika ir Elektrotechnika 25, nr 3 (25.06.2019): 50–55. http://dx.doi.org/10.5755/j01.eie.25.3.23676.
Pełny tekst źródłaSutikno, Tole, Ahmad Saudi Samosir, Rizky Ajie Aprilianto, Hendril Satrian Purnama, Watra Arsadiando i Sanjeevikumar Padmanaban. "Advanced DC–DC converter topologies for solar energy harvesting applications: a review". Clean Energy 7, nr 3 (6.05.2023): 555–70. http://dx.doi.org/10.1093/ce/zkad003.
Pełny tekst źródłaZhou, Xuanyi, Wei Juin Choy, Abraham M. Alcaide, Shuo Wang, Sandro Guenter, Jose I. Leon, Vito Giuseppe Monopoli i in. "Common DC-Link Capacitor Harmonic Current Minimization for Cascaded Converters by Optimized Phase-Shift Modulation". Energies 16, nr 5 (21.02.2023): 2098. http://dx.doi.org/10.3390/en16052098.
Pełny tekst źródłaShen, Chih-Lung, Li-Zhong Chen, Tsung-Yung Chuang i Yu-Shan Liang. "Cascaded-like High-Step-Down Converter with Single Switch and Leakage Energy Recycling in Single-Stage Structure". Electronics 11, nr 3 (24.01.2022): 352. http://dx.doi.org/10.3390/electronics11030352.
Pełny tekst źródłaAnish John Paul, M. "Design and Analysis of DC-DC Converters for Photovoltaic Systems". Asian Journal of Electrical Sciences 8, S1 (5.06.2019): 1–4. http://dx.doi.org/10.51983/ajes-2019.8.s1.2318.
Pełny tekst źródłaAfridi, Muhammad Danial. "Isolated Cascaded DAB DC-DC Converter to Boost Medium DC Voltage to HVDC". Volume 21, Issue 1 21, nr 1 (30.06.2023): 1–6. http://dx.doi.org/10.52584/qrj.2101.01.
Pełny tekst źródłaJamshidpour, Ehsan, Slavisa Jovanovic i Philippe Poure. "Equivalent Two Switches and Single Switch Buck/Buck-Boost Circuits for Solar Energy Harvesting Systems". Energies 13, nr 3 (27.01.2020): 583. http://dx.doi.org/10.3390/en13030583.
Pełny tekst źródłaZakir Ullah, Zeeshan Umar, Muhammad Awais, Asif Nawaz, Aamir Naeem Khan, Sheeraz Ahmed i Mohsin Tahir. "Design and Analysis of Novel Cascaded Topology with LD Cell for Micro-source Grids". Journal of Computing & Biomedical Informatics 4, nr 01 (29.12.2022): 185–96. http://dx.doi.org/10.56979/401/2022/112.
Pełny tekst źródłaGholizadeh, Hossein, i Lazhar Ben-Brahim. "A New Non-Isolated High-Gain Single-Switch DC–DC Converter Topology with a Continuous Input Current". Electronics 11, nr 18 (13.09.2022): 2900. http://dx.doi.org/10.3390/electronics11182900.
Pełny tekst źródłaBabu, Bobba Phaneedra, Allem Rama Krishna Reddy, Gujjula Pratap, Murra Harshavardhana Reddy, A. Hussien Abbas, Raj Kumar i J. Praveen. "Comparison Analysis of Semiconductor Characterisation topologies using Energy Recirculation Concept". E3S Web of Conferences 391 (2023): 01189. http://dx.doi.org/10.1051/e3sconf/202339101189.
Pełny tekst źródłaNaresh, SVK, i Sankar Peddapati. "Complementary switching enabled cascaded boost‐buck‐boost (BS‐BB) and buck‐boost‐buck (BB‐BU) converters". International Journal of Circuit Theory and Applications 49, nr 9 (27.04.2021): 2736–53. http://dx.doi.org/10.1002/cta.3034.
Pełny tekst źródłaKumar, M., i S. Ramesh. "Design and Implementation of Three-Winding Coupled Inductor and Switched Capacitor-Based DC–DC Converter Fed PV-TDVR". Journal of Circuits, Systems and Computers 28, nr 09 (sierpień 2019): 1950158. http://dx.doi.org/10.1142/s0218126619501585.
Pełny tekst źródłaBoudja, Wassim, i Kamel Barra. "Integrated Model Predictive Control of a Single-Phase Multilevel T-type Converter for a Photovoltaic Grid Connected System under Failure Conditions". Power Electronics and Drives 8, nr 1 (1.01.2023): 142–64. http://dx.doi.org/10.2478/pead-2023-0011.
Pełny tekst źródłaGholizadeh, Hossein, Reza Sharifi Shahrivar, Mir Hashemi, Ebrahim Afjei i Saman A. Gorji. "Design and Implementation a Single-Switch Step-Up DC-DC Converter Based on Cascaded Boost and Luo Converters". Energies 14, nr 12 (16.06.2021): 3584. http://dx.doi.org/10.3390/en14123584.
Pełny tekst źródłaBuvana, D., i R. Jayashree. "ANFIS Controller-Based Cascaded Nonisolated Bidirectional DC–DC Converter". Journal of Circuits, Systems and Computers 28, nr 01 (15.10.2018): 1950001. http://dx.doi.org/10.1142/s0218126619500014.
Pełny tekst źródłaMoadabi, N., M. Mahmoodi i G. B. Gharehpetian. "Control systems of distributed generation modules aggregated by cascaded boost converters". Renewable Energy and Power Quality Journal 1, nr 05 (marzec 2007): 295–99. http://dx.doi.org/10.24084/repqj05.278.
Pełny tekst źródłaAhmad, Fiaz, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç i Meltem Elitas. "A robust cascaded controller for DC-DC Boost and Cuk converters". World Journal of Engineering 14, nr 5 (2.10.2017): 459–66. http://dx.doi.org/10.1108/wje-10-2016-0118.
Pełny tekst źródłaZhang, Bo, Jin Huang, Yongfeng Song, Xinbo Liu, Jiahui Ren, Chengwei Kang, Yingtao Ma, Shijie Sun i Lijun Diao. "Sharing Voltage and Current of an Input-Series–Output-Parallel Boost-LLC Converter". Energies 15, nr 19 (29.09.2022): 7165. http://dx.doi.org/10.3390/en15197165.
Pełny tekst źródłaChakravarthi, B. N. Ch V., i G. V. Siva Krishna Rao. "A High Gain Novel Double-Boost Converter for DC Microgrid Applications". Journal of Circuits, Systems and Computers 29, nr 15 (6.07.2020): 2050246. http://dx.doi.org/10.1142/s0218126620502461.
Pełny tekst źródłaKunstbergs, Noass, Hartmut Hinz, Nigel Schofield i Dennis Roll. "Efficiency Improvement of a Cascaded Buck and Boost Converter for Fuel Cell Hybrid Vehicles with Overlapping Input and Output Voltages". Inventions 7, nr 3 (31.08.2022): 74. http://dx.doi.org/10.3390/inventions7030074.
Pełny tekst źródłaThayumanavan, Porselvi, Deepa Kaliyaperumal, Umashankar Subramaniam, Mahajan Sagar Bhaskar, Sanjeevikumar Padmanaban, Zbigniew Leonowicz i Massimo Mitolo. "Combined Harmonic Reduction and DC Voltage Regulation of A Single DC Source Five-Level Multilevel Inverter for Wind Electric System". Electronics 9, nr 6 (12.06.2020): 979. http://dx.doi.org/10.3390/electronics9060979.
Pełny tekst źródłaRamos-Paja, Carlos Andrés, Juan David Bastidas-Rodríguez i Daniel González-Montoya. "Non-linear controller for storage systems with regulated outputvoltage and safecurrent slew-rate for the battery". Revista UIS Ingenierías 19, nr 3 (27.03.2020): 117–29. http://dx.doi.org/10.18273/revuin.v19n3-2020012.
Pełny tekst źródłaVillanueva-Loredo, Juan Antonio, Ma Guadalupe Ortiz-Lopez, Jesus Leyva-Ramos i Luis Humberto Diaz-Saldierna. "Switching Regulator Based on a Non-Inverting Step-Down/Up DC–DC Converter for Lithium-Ion Battery Applications". Micromachines 14, nr 6 (29.05.2023): 1144. http://dx.doi.org/10.3390/mi14061144.
Pełny tekst źródłaThounthong, Phatiphat, Pongsiri Mungporn, Babak Nahid-Mobarakeh, Nicu Bizon, Serge Pierfederici i Damien Guilbert. "Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter". Sustainability 13, nr 14 (20.07.2021): 8093. http://dx.doi.org/10.3390/su13148093.
Pełny tekst źródłaGu, Jiayuan, Hongmei Li, Hengguo Zhang, Chen Pan i Zhiyuan Luan. "Cascaded model‐free predictive control for single‐phase boost power factor correction converters". International Journal of Robust and Nonlinear Control 31, nr 10 (7.05.2021): 5016–32. http://dx.doi.org/10.1002/rnc.5526.
Pełny tekst źródłaHaroun, Reham, Abdelali El Aroudi, Angel Cid-Pastor, Germain Garcia, Carlos Olalla i Luis Martinez-Salamero. "Impedance Matching in Photovoltaic Systems Using Cascaded Boost Converters and Sliding-Mode Control". IEEE Transactions on Power Electronics 30, nr 6 (czerwiec 2015): 3185–99. http://dx.doi.org/10.1109/tpel.2014.2339134.
Pełny tekst źródłaYu, Jingrong, Maoyun Liu, Dongran Song, Jian Yang i Mei Su. "A Soft-Switching Control for Cascaded Buck-Boost Converters Without Zero-Crossing Detection". IEEE Access 7 (2019): 32522–36. http://dx.doi.org/10.1109/access.2019.2903841.
Pełny tekst źródłaSaravanan, S., K. Karunanithi i S. Pragaspathy. "A Novel Topology for Bidirectional Converter with High Buck Boost Gain". Journal of Circuits, Systems and Computers 29, nr 14 (20.03.2020): 2050222. http://dx.doi.org/10.1142/s0218126620502229.
Pełny tekst źródłaArchana, N., i R. Aravind Babu. "Fault-tolerant reconfigurable second-life battery system using cascaded DC- DC converter". Scientific Temper 14, nr 01 (25.03.2023): 191–95. http://dx.doi.org/10.58414/scientifictemper.2023.14.1.23.
Pełny tekst źródłaKalaiarasu, Srinivasan, i Sudhakar Natarajan. "A comparison statement on DCPWM based conducted EMI noise mitigation process in DC-DC converters for EV". Bulletin of Electrical Engineering and Informatics 12, nr 2 (1.04.2023): 704–18. http://dx.doi.org/10.11591/eei.v12i2.4315.
Pełny tekst źródłaWu, Jiawen. "A Unified Switch Loss Model and Design Consideration for Multilevel Boost PFC With GaN Devices". CPSS Transactions on Power Electronics and Applications 6, nr 4 (grudzień 2021): 349–58. http://dx.doi.org/10.24295/cpsstpea.2021.00032.
Pełny tekst źródłaHassan, Turki Kahawish. "Reduction of single DC bus capacitance in photovoltaic cascaded multilevel converter". International Journal of Power Electronics and Drive Systems (IJPEDS) 11, nr 3 (1.09.2020): 1660. http://dx.doi.org/10.11591/ijpeds.v11.i3.pp1660-1674.
Pełny tekst źródłaWaradzyn, Zbigniew, Robert Stala, Andrzej Mondzik, Aleksander Skała i Adam Penczek. "GaN-Based DC-DC Resonant Boost Converter with Very High Efficiency and Voltage Gain Control". Energies 13, nr 23 (3.12.2020): 6403. http://dx.doi.org/10.3390/en13236403.
Pełny tekst źródłaNoroozian, Reza, Gevorg Gharehpetian, Mehrdad Abedi i Mishel Mahmoodi. "Grid-Tied and Stand-Alone Operation of Distributed Generation Modules Aggregated by Cascaded Boost Converters". Journal of Power Electronics 10, nr 1 (20.01.2010): 97–105. http://dx.doi.org/10.6113/jpe.2010.10.1.097.
Pełny tekst źródłaShoja-Majidabad, Sajjad. "Flatness-Based Decentralized Adaptive Backstepping Control of Cascaded DC–DC Boost Converters Using Legendre Polynomials". Journal of Control, Automation and Electrical Systems 31, nr 6 (2.07.2020): 1533–48. http://dx.doi.org/10.1007/s40313-020-00622-8.
Pełny tekst źródłaBenamrane, Karima, Thameur Abdelkrim, Benlahbib Benlahbib, Noureddine Bouarroudj, Abdelhalim Borni, Abdelkader Lakhdari i Ahmed Bahri. "New Optimized Control of Cascaded Multilevel Converters for Grid Tied Photovoltaic Power Generation". Journal Européen des Systèmes Automatisés 54, nr 5 (31.10.2021): 769–76. http://dx.doi.org/10.18280/jesa.540512.
Pełny tekst źródłaZheng, Wei, Cong Hu, Bin Zhao, Xiao-Bao Su, Gang Wang, Xiao-Wan Hou i Bruce Gu. "A Two-Stage DC/DC Isolated High-Voltage Converter with Zero-Voltage Switching and Zero-Current Switching Applied in Electronic Power Conditioners". Energies 15, nr 17 (1.09.2022): 6378. http://dx.doi.org/10.3390/en15176378.
Pełny tekst źródłaZhang, Chao, Jun Wang, Sai Tang, Daming Wang, Hengyu Yu, Zongjian Li, Xin Yin i Z. John Shen. "Coordinated Two-Stage Operation and Control for Minimizing Energy Storage Capacitors in Cascaded Boost-Buck PFC Converters". IEEE Access 8 (2020): 191286–97. http://dx.doi.org/10.1109/access.2020.3030390.
Pełny tekst źródłaCheng, Zhiping, Zhongwen Li, Shuihui Li, Jinfeng Gao, Jikai Si, Himadry Shekhar Das i Weizhen Dong. "A novel cascaded control to improve stability and inertia of parallel buck-boost converters in DC microgrid". International Journal of Electrical Power & Energy Systems 119 (lipiec 2020): 105950. http://dx.doi.org/10.1016/j.ijepes.2020.105950.
Pełny tekst źródłaRashmi, M. R., i B. Anu. "Cascading of Diode Clamped Multilevel Inverter Boosters for High Voltage Applications". Applied Mechanics and Materials 313-314 (marzec 2013): 876–81. http://dx.doi.org/10.4028/www.scientific.net/amm.313-314.876.
Pełny tekst źródłaBroday, Gabriel R., Luiz A. C. Lopes i Gilney Damm. "Exact Feedback Linearization of a Multi-Variable Controller for a Bi-Directional DC-DC Converter as Interface of an Energy Storage System". Energies 15, nr 21 (25.10.2022): 7923. http://dx.doi.org/10.3390/en15217923.
Pełny tekst źródłaN, Kanagaraj, Morteza Mollajafari, Farzam Mohammadiazar, Ehsan Akbari, Ebrahim Sheykhi i Hicham Chaoui. "A New Voltage-Multiplier-Based Power Converter Configuration Suitable for Renewable Energy Sources and Sustainability Applications". Sustainability 14, nr 24 (13.12.2022): 16698. http://dx.doi.org/10.3390/su142416698.
Pełny tekst źródłaNajdek, Karol, Radosław Nalepa i Robert Lis. "Selection of Output Voltage Compensators Gains in Two Cascaded Boost Converters with Input Filters by Means of the \({\mathfrak{D}}\)-Decomposition Technique". Energies 14, nr 18 (17.09.2021): 5883. http://dx.doi.org/10.3390/en14185883.
Pełny tekst źródłaCh. Santosh Kumar i S. Tara Kalyani. "Improvement of Power Quality in Smart Grid Connected PV System Using Multilevel Inverter". Journal of Advanced Research in Applied Sciences and Engineering Technology 31, nr 1 (13.06.2023): 1–13. http://dx.doi.org/10.37934/araset.31.1.113.
Pełny tekst źródłaManas, Servavidya Kumar, i Bharat Bhushan. "Performance Analysis of Conventional, Quadratic and Double Cascaded Boost Converters in a PV System with P and O based MPPT Controller". International Journal of Computer Applications 176, nr 40 (15.07.2020): 26–33. http://dx.doi.org/10.5120/ijca2020920507.
Pełny tekst źródłaAbouobaida, Hassan, i Said El Bied. "New Optimization Method of the MPPT Algorithm and Balancing Voltage Control of the Three-Level Boost Converter (TLBC)". International Journal of Applied Power Engineering (IJAPE) 6, nr 2 (1.08.2017): 113. http://dx.doi.org/10.11591/ijape.v6.i2.pp113-122.
Pełny tekst źródła