Gotowa bibliografia na temat „CASCADE REFRIGERATION SYSTEM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CASCADE REFRIGERATION SYSTEM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CASCADE REFRIGERATION SYSTEM"
Kasi, Parthiban, i M. Cheralathan. "Review of cascade refrigeration systems for vaccine storage". Journal of Physics: Conference Series 2054, nr 1 (1.10.2021): 012041. http://dx.doi.org/10.1088/1742-6596/2054/1/012041.
Pełny tekst źródłaGANJEHSARABI, HADI, IBRAHIM DINCER i ALI GUNGOR. "THERMODYNAMIC ANALYSIS AND PERFORMANCE ASSESSMENT OF A CASCADE ACTIVE MAGNETIC REGENERATIVE REFRIGERATION SYSTEM". International Journal of Air-Conditioning and Refrigeration 21, nr 03 (wrzesień 2013): 1350016. http://dx.doi.org/10.1142/s2010132513500168.
Pełny tekst źródłaFernández-Seara, José, Jaime Sieres i Manuel Vázquez. "Compression–absorption cascade refrigeration system". Applied Thermal Engineering 26, nr 5-6 (kwiecień 2006): 502–12. http://dx.doi.org/10.1016/j.applthermaleng.2005.07.015.
Pełny tekst źródłaYANG, Y., M. W. TONG, G. YANG i X. P. WANG. "APPLICATION OF CASCADE REFRIGERATION SYSTEM WITH MIXING REFRIGERANT IN COLD AIR CUTTING". International Journal of Modern Physics B 19, nr 01n03 (30.01.2005): 521–23. http://dx.doi.org/10.1142/s0217979205028955.
Pełny tekst źródłaRajmane, Umesh C. "A Review of Vapour Compression Cascade Refrigeration System". Asian Journal of Engineering and Applied Technology 5, nr 2 (5.11.2016): 36–39. http://dx.doi.org/10.51983/ajeat-2016.5.2.801.
Pełny tekst źródłaZheng, Da Yu, Dan Li, Jia Zheng, Li Ping Gao i Yi Ming Zhang. "The Study of the Effects of Refrigerant Fraction on Auto-Cascade Refrigeration System of Evaporation Temperature". Advanced Materials Research 889-890 (luty 2014): 321–24. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.321.
Pełny tekst źródłaYang, Shutong, Youlei Wang i Yufei Wang. "Optimization of Cascade Cooling System Based on Lithium Bromide Refrigeration in the Polysilicon Industry". Processes 9, nr 9 (18.09.2021): 1681. http://dx.doi.org/10.3390/pr9091681.
Pełny tekst źródłaDuan, Rui, Guo Min Cui i Qun Zhi Zhu. "Analysis of Thermodynamic Performance in NH3/CO2 Cascade Refrigeration System". Advanced Materials Research 860-863 (grudzień 2013): 1484–88. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1484.
Pełny tekst źródłaRajmane, Umesh C. "Cascade Refrigeration System: R404a-R23 Refrigerant". Asian Journal of Electrical Sciences 6, nr 1 (5.05.2017): 18–22. http://dx.doi.org/10.51983/ajes-2017.6.1.1993.
Pełny tekst źródłaYang, Qichao, Xiaonan Chen, Weikai Chi, Liansheng Li, Guangbin Liu i Yuanyang Zhao. "Thermodynamic Analysis of an NH3/CO2 Cascade Refrigeration System with Subcooling in the Low-Temperature Circuit Utilizing the Expansion Work". International Journal of Energy Research 2023 (27.02.2023): 1–17. http://dx.doi.org/10.1155/2023/5987368.
Pełny tekst źródłaRozprawy doktorskie na temat "CASCADE REFRIGERATION SYSTEM"
Schutte, Abraham Jacobus. "Demand-side energy management of a cascade mine surface refrigeration system / A.J. Schutte". Thesis, North-West University, 2007. http://hdl.handle.net/10394/1843.
Pełny tekst źródłaThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2008.
Sawalha, Samer. "Carbon Dioxide in Supermarket Refrigeration". Doctoral thesis, Stockholm : Energiteknik, Energy Technology, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4753.
Pełny tekst źródłaHaile-Michael, Getu. "Cascade and secondary coolant supermarket refrigeration systems : modelling and new frost correlations". Thesis, University of Auckland, 2011. http://hdl.handle.net/2292/6846.
Pełny tekst źródłaСкрипник, О. В., В. В. Свяцький, O. Skrypnyk i V. Sviatskyi. "Перспективні напрямки технологічного застосування гідратів двооксиду вуглецю". Thesis, ХНТУ, 2017. http://dspace.kntu.kr.ua/jspui/handle/123456789/6869.
Pełny tekst źródłaTsung-Chiuan, Chen陳宗權, i 陳宗權. "Research of Cascade Refrigeration System". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/gtmpzu.
Pełny tekst źródła國立臺北科技大學
能源與冷凍空調工程系碩士班
100
The Cryogenic systems use cascade system, thus reducing the compression ratio. As the volume of the compressors in two stages is decreased, the wasted work is reduced relatively, so that the energy can be saved, and the system operating temperature can be reached easily. Therefore, this study used the cascade refrigeration system available on the market for hardware design, control strategy and refrigerant collocation, in order to meet the appropriate operating conditions of this system design. Due to the faults of the original system compressor and control circuit, the compressor with similar discharge capacity was used instead, and the board circuit was replaced by traditional circuit. The hot section refrigerant A+B and cold section refrigerant A+B were filled in, so that the cascade system could meet the required temperature and stability. After the refrigeration system was completed. The chamber temperature was cooled to setting value, and then tested the performance of the system under the stable and maintained chamber temperature. The load was increased at the chamber temperature of -60℃, -70℃, -80℃ and -80℃ for testing. Afterwards, the temperature and pressure data in two hours stable operation were taken and the pressure-enthalpy chart was drawn to calculate the performance of refrigeration system. The results showed that the performance of cascade system in operation at -60℃ was 2.31, the performance at -70℃ was 1.07, the performance at -80℃ was 0.84 and the performance with additional load at -80℃ was 1.78, however, considering the time required in the process of cooling to -80℃ the cascade system performance was 0.33.
Chiang, Fu-Lin, i 江富麟. "Cascade Refrigeration System Reaearch of Freeze Dryer". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/5xyjg9.
Pełny tekst źródła國立臺北科技大學
能源與冷凍空調工程系碩士班
97
Refrigeration system has a long history, and vacuum freeze-drying is a technology used for drying, color protection, fresh keeping, or nutrition preservation of food, biologics, biomaterials, or micro/nano materials, So Freeze-drying systems to be used for some time. But most operating temperature to the systems are -50℃, besides, old machines have only one cold trap chamber, if we want to remove the ice on cold trap, we will shutdown the machines, then Production process will be delayed. This thesis is focused on improving the cascade vacuum Freeze-drying Development, and this operating temperature can reach to -80℃,it is more favorable for specific high-tech products process and will not have a negative impact on production time. In experiments, freeze-drying system had a best evaporative temperature.
Lin, Shian-Tzong, i 林憲宗. "Performance Analysis of R717/HC Cascade Refrigeration System". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/sme3j6.
Pełny tekst źródła國立臺北科技大學
能源與冷凍空調工程系碩士班
98
Low-temperature storage refrigeration system is vital for much industry range. The traditional single-stage vapor compressor system is not suitable for low-temperature system; therefore, it should be used through cascade refrigeration system. For many years, as a result of environmental protection issue related global warning and depletion of ozone layer caused by the use of synthetic refrigerants (CFC’s, HCFC’s and HFC’s), the return to the use of harmless natural substances is a must to alternative refrigerants in refrigeration systems. Ammonia (R717) and Hydrocarbon refrigerant have excellent thermodynamic and thermo-physical properties; they can be used in a wide range of refrigeration system. In this paper, a cascade refrigeration system with Ammonia (R717) and Hydrocarbon refrigerant (HC) as working fluids in the low and high temperature stages, respectively, has been analysed and compared with R22 and R134a of traditional refrigerant. Further to research and analysis the relation of COP and mass flow ratio versus operating and design parameters of 6 group’s refrigerant in order to get optimization of parameter and analysed refrigerant in cascade low-temperature refrigeration system.
Hsieh, Cheng-Chih, i 謝承志. "Study of Expansion Valve on Cascade Refrigeration System Performance". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/442s6p.
Pełny tekst źródła國立臺北科技大學
能源與冷凍空調工程系碩士班
102
The cascade refrigeration systems are widely applied in Taiwan, for use in air conditioning, refrigeration and food processing, pharmaceuticals, chemicals, machinery, etc. More attention recently, So this thesis refrigeration components easily available in the market to buy the dual refrigeration system developed for conducted to explore various expansion valve of the refrigerant flow. The system of high and low temperature circulation system individually in four A, B, C and D expansion valve testing, in order to best binary refrigerating system expansion valve and the coefficient of performance. Results in a high temperature due to the circulatory system A, B, C the expansion valve of the refrigerant flow rate is too small, resulting in low temperature startup cycle, temperature cycle system can,t be stabilized at the intercooler below -30 ℃, the system also due to temperature cycling and A the flow of refrigerant expansion valve B is too small, the evaporator can,t reach -80 ℃, and start C expansion valve of the evaporator inlet temperature difference is too large, said it could not achieve a good cooling effect, this thesis high binary refrigeration system, hypothermic circulatory system are available starting D expansion valve coefficient of 0.45 for the best performance.
Cheng, Po-Jen, i 鄭博仁. "Analysis of Improving the Performance of Cascade Refrigeration System". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/rx22f2.
Pełny tekst źródła國立臺北科技大學
能源與冷凍空調工程系碩士班
102
This paper examines how the common refrigerant R-134a and the non-azeotropic refrigerant R-404A perform in a binary refrigeration with the addition of a refrigerant precooler and a desuperheater and the changes in the system with the added refrigerants before and after subcooling through experiments and comparison. Inferences are made on the viability of installing a ‘refrigerant precooler’ in the refrigerant system through theoretical analysis of changes in the coefficient of performance (COP) of the system in the subcooled and superheated states. The purpose is to understand how the binary refrigeration system performs in terms of actual operation and system performance in the different models designed for this study and examine the possibility to optimize the ‘refrigerant precooler and desuperheater combination’ developed in this study based on the data obtained. Analysis of the data obtained from this experiment reveals that the addition of a heat receiver at the outlet of the compressor in a refrigerated vehicle can effectively control the degree of subcooling of the drainage pipe in the condenser at below 38℃ and the addition of a refrigerant precooler improves problems such as unstable refrigerant temperature rise in the refrigerated vehicle after evaporator pump-down and shutdown, thereby increasing the refrigeration speed. An analysis that compares the model in which both additional components are synchronized with the basic model shows that with the power consumption of the binary refrigeration system as the baseline, adding only the desuperheater, only the precooler, and the desuperheater and precooler combination achieves energy efficiency of 24%, 54.3% and 57.8%, respectively. Therefore, the addition of the desuperheater and precooler combination to the binary refrigeration system can effectively improve overall performance and reduce carbon emissions.
Chiou, Chi-Han, i 邱祈翰. "Study of an Auto - Cascade Refrigeration System with Refrigerant Mixtures". Thesis, 2001. http://ndltd.ncl.edu.tw/handle/83760711606136132132.
Pełny tekst źródła國立交通大學
機械工程系
89
The objective of this research is to design a auto-cascade refrigeration system with zeotropic refrigerant mixtures R-32/R-134a(30/70 wt%), which might reach a low temperature —40℃. This system utilizes only one single compressor with a phase separator in order to shift the concentration contents of the refrigerant mixtures .The vapor phase flows through a cascade heat exchanger and exchanges latent heat with the low temperature liquid phase after expansion. Then, the mixture rich with higher boiling component flows into the evaporator to create the low temperature cooling, and merges with the mixture rich with lower boiling component, which leads finally back to the compressor and thus completes a cycle. This system have two advantages. First, utilization of the temperature glide of zeotropic refrigerant mixtures can reduce heat transfer irreversibility in the heat exchangers. Secondly, the phase separator shifts the concentration percentages of the components by the temperature difference of the boiling points. Thus, this system can raise the cooling capacity and can reduce the power consumption. Test results for a R-32/R-134a (30/70 wt %) cascade loop, compared with a baseline loop, indicates the increase of only 6% in the power consumption and degradation of 10% in the COP. In conclusion, this system can raise the evaporating pressure, can reduce the pressure ratio with one single compressor, and can achieve the designed low temperature.
Książki na temat "CASCADE REFRIGERATION SYSTEM"
Fulkerson, Frank. Simplified cascade system servicing. Troy, Mich: Business News Pub. Co., 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "CASCADE REFRIGERATION SYSTEM"
Ganjehsarabi, Hadi, Ibrahim Dincer i Ali Gungor. "Exergoeconomic Analysis of a Cascade Active Magnetic Regenerative Refrigeration System". W Progress in Exergy, Energy, and the Environment, 69–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_6.
Pełny tekst źródłaGhosh, Ayan, Aditya Sharma, Bharat Varshney, Chirag i Pawan Kumar Kashyap. "A Theoretical Thermodynamic Analysis of R1234yf/CO2 Cascade Refrigeration System". W Lecture Notes in Mechanical Engineering, 57–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8517-1_5.
Pełny tekst źródłaTan, Hüsamettin, i Ali Erişen. "Exergy Analysis of Cascade Refrigeration System for Different Refrigerant Couples". W Springer Proceedings in Energy, 633–42. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30171-1_68.
Pełny tekst źródłaAmin, Mihir H., Hetav M. Naik, Bidhin B. Patel, Prince K. Patel i Snehal N. Patel. "Exergy and Energy Analyses of Half Effect–Vapor Compression Cascade Refrigeration System". W Information and Communication Technology for Intelligent Systems, 55–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7078-0_6.
Pełny tekst źródłaDas, Ipsita, i Samiran Samanta. "Comparative Energetic and Exergetic Analyses of a Cascade Refrigeration System Pairing R744 with R134a, R717, R1234yf, R600, R1234ze, R290". W Advances in Air Conditioning and Refrigeration, 221–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6360-7_20.
Pełny tekst źródłaBoyaghchi, Fateme A., i Motahare Mahmoodnezhad. "Comparative Study of Two Solar Cascade Absorption-Compression Refrigeration Systems Based on Energy and Exergy Methods". W Exergetic, Energetic and Environmental Dimensions, 457–74. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813734-5.00026-3.
Pełny tekst źródłaStreszczenia konferencji na temat "CASCADE REFRIGERATION SYSTEM"
ALMEIDA QUEIROZ, MARCUS VINICIUS, Arthur Antunes i ENIO BANDARRA FILHO. "EXPERIMENTAL EVALUATION OF A CASCADE REFRIGERATION SYSTEM". W 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0069.
Pełny tekst źródłaShyam, Hasanabada, Sunnam Nagaraju, Mallepalli Venkateswar Reddy, Ravi Kiran Chintalapudi i Anil Kumar Reddy Padidam. "Performance evaluation of cascade refrigeration system using different refrigerants". W PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114064.
Pełny tekst źródłaJoão Gabriel de Oliveira Marques i Paulo Eduardo Lopes Barbieri. "EXERGETIC ANALYSIS OF A R717/R744 CASCADE REFRIGERATION SYSTEM". W 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-0420.
Pełny tekst źródłaYang Shi, XueLi Nie, Bei Zhang, Dan Zhou, Jiakai Wang i Zhimin Wang. "Design and experimental investigation on a 150K auto-cascade refrigeration system". W Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930561.
Pełny tekst źródłaNinković, Dimitrije, Uroš Milovančević, Milena Otović i Vladimir Černicin. "Comparative Analysis of Electric Energy Consumption of Cascade System R134a/CO2 with Single Stage R404a and Two-Stage CO2 Installation". W 50th International HVAC&R Congress and Exhibition. SMEITS, 2020. http://dx.doi.org/10.24094/kghk.019.50.1.287.
Pełny tekst źródłaWang, Bingming, Jianfeng Li, Huagen Wu i Ziwen Xing. "Performance Comparison of Two Different Compressors in NH3/CO2 Cascade Refrigeration System". W 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5668.
Pełny tekst źródłaMahesh, M., P. Thangavel, V. Dharshankumar, S. Gokul Prasanth i S. Gokul. "Performance analysis of cascade refrigeration system using a helical type condenser coil". W SECOND INTERNATIONAL CONFERENCE ON CIRCUITS, SIGNALS, SYSTEMS AND SECURITIES (ICCSSS - 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0125406.
Pełny tekst źródłaKilicarslan, Ali, i Norbert Mu¨ller. "Irreversibility Analysis of a Vapor Compression Cascade Refrigeration Cycle". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66363.
Pełny tekst źródłaRupesh, P. L., J. M. Babu, D. Surryaprakash i R. D. Misra. "Experimental and computational evaluation of temperature difference of a cascade condenser of R134a-R23 cascade refrigeration system". W 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM). IEEE, 2015. http://dx.doi.org/10.1109/icstm.2015.7225494.
Pełny tekst źródłaZheng, Da-Yu, Lei Liu, Li-Ping Gao, Qiu-Yan Chen, Shuo Chen, Hai-Feng Yu, Xiang Li i Jie Li. "Theoretical gas phase compressibility factor of mixed refrigerants in auto-cascade refrigeration system". W 5th International Conference on Advanced Design and Manufacturing Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icadme-15.2015.133.
Pełny tekst źródła