Gotowa bibliografia na temat „Cascade Refrigeration”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cascade Refrigeration”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cascade Refrigeration"
Kasi, Parthiban, i M. Cheralathan. "Review of cascade refrigeration systems for vaccine storage". Journal of Physics: Conference Series 2054, nr 1 (1.10.2021): 012041. http://dx.doi.org/10.1088/1742-6596/2054/1/012041.
Pełny tekst źródłaGANJEHSARABI, HADI, IBRAHIM DINCER i ALI GUNGOR. "THERMODYNAMIC ANALYSIS AND PERFORMANCE ASSESSMENT OF A CASCADE ACTIVE MAGNETIC REGENERATIVE REFRIGERATION SYSTEM". International Journal of Air-Conditioning and Refrigeration 21, nr 03 (wrzesień 2013): 1350016. http://dx.doi.org/10.1142/s2010132513500168.
Pełny tekst źródłaYANG, Y., M. W. TONG, G. YANG i X. P. WANG. "APPLICATION OF CASCADE REFRIGERATION SYSTEM WITH MIXING REFRIGERANT IN COLD AIR CUTTING". International Journal of Modern Physics B 19, nr 01n03 (30.01.2005): 521–23. http://dx.doi.org/10.1142/s0217979205028955.
Pełny tekst źródłaDuan, Rui, Guo Min Cui i Qun Zhi Zhu. "Analysis of Thermodynamic Performance in NH3/CO2 Cascade Refrigeration System". Advanced Materials Research 860-863 (grudzień 2013): 1484–88. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1484.
Pełny tekst źródłaZheng, Da Yu, Dan Li, Jia Zheng, Li Ping Gao i Yi Ming Zhang. "The Study of the Effects of Refrigerant Fraction on Auto-Cascade Refrigeration System of Evaporation Temperature". Advanced Materials Research 889-890 (luty 2014): 321–24. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.321.
Pełny tekst źródłaRajmane, Umesh C. "A Review of Vapour Compression Cascade Refrigeration System". Asian Journal of Engineering and Applied Technology 5, nr 2 (5.11.2016): 36–39. http://dx.doi.org/10.51983/ajeat-2016.5.2.801.
Pełny tekst źródłaYang, Shutong, Youlei Wang i Yufei Wang. "Optimization of Cascade Cooling System Based on Lithium Bromide Refrigeration in the Polysilicon Industry". Processes 9, nr 9 (18.09.2021): 1681. http://dx.doi.org/10.3390/pr9091681.
Pełny tekst źródłaYang, Qichao, Xiaonan Chen, Weikai Chi, Liansheng Li, Guangbin Liu i Yuanyang Zhao. "Thermodynamic Analysis of an NH3/CO2 Cascade Refrigeration System with Subcooling in the Low-Temperature Circuit Utilizing the Expansion Work". International Journal of Energy Research 2023 (27.02.2023): 1–17. http://dx.doi.org/10.1155/2023/5987368.
Pełny tekst źródłaJankovich, Dennis, i Kresimir Osman. "A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry". Thermal Science 19, nr 5 (2015): 1821–33. http://dx.doi.org/10.2298/tsci130611097j.
Pełny tekst źródłaFernández-Seara, José, Jaime Sieres i Manuel Vázquez. "Compression–absorption cascade refrigeration system". Applied Thermal Engineering 26, nr 5-6 (kwiecień 2006): 502–12. http://dx.doi.org/10.1016/j.applthermaleng.2005.07.015.
Pełny tekst źródłaRozprawy doktorskie na temat "Cascade Refrigeration"
Haile-Michael, Getu. "Cascade and secondary coolant supermarket refrigeration systems : modelling and new frost correlations". Thesis, University of Auckland, 2011. http://hdl.handle.net/2292/6846.
Pełny tekst źródłaSchutte, Abraham Jacobus. "Demand-side energy management of a cascade mine surface refrigeration system / A.J. Schutte". Thesis, North-West University, 2007. http://hdl.handle.net/10394/1843.
Pełny tekst źródłaThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2008.
Sawalha, Samer. "Carbon Dioxide in Supermarket Refrigeration". Doctoral thesis, Stockholm : Energiteknik, Energy Technology, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4753.
Pełny tekst źródłaQueiroz, Marcus Vinícius Almeida. "Avaliação experimental de um sistema de refrigeração cascata subcrítico com HFCs/C02". Universidade Federal de Uberlândia, 2017. https://repositorio.ufu.br/handle/123456789/19110.
Pełny tekst źródłaThis study evaluates the performance of a cascade system in subcritical operation using the pair R134a/R744, as an option to conventional systems in supermarkets, which usually uses R404A, or R22. The experimental apparatus consists of a variable speed reciprocating compressor for R744 and an electronic expansion valve that promotes direct evaporation of the CO2 inside a cold room (2,3m x 2,6m x 2,5m) to maintain the internal air temperature stable. The high-temperature cycle consists of a reciprocating compressor for R134a, an electronic expansion valve, and an air-cooled condenser. A plate heat exchanger, which is at the same time, the condenser for the R744 and evaporator to R134a completes the setup. During the experimental tests, two parameters were manipulated: The superheating degree of the R744, 5-15 K, and the R744 compressor operation frequency, 45-65 Hz. The cooling capacity values for R134a/R744 ranged between 4,30 ± 0,01 and 5,57 ± 0,02 kW, demonstrating an application to the cascade system under variable thermal load conditions. This operational flexibility also extends to the air temperature values established inside the cold room, being the lower value of -17,7 ° C and higher -0,8 ° C. In order to contribute to the improvement of the cooling processes, mainly about the energy efficiency, a drop-in has been made at the high- temperature cycle, which R134a refrigerant charge has been replaced by R438A. The comparison was done regard both systems providing similar cooling capacities and air temperature values inside the cold room. As a result, the consumption of the compressor operating with R438A was higher in all tests. The COP values for the R134a/R744 system ranged from 1,81 ± 0,01 to 2,09 ± 0,01, while with the R438A/R744 system, from 1,41 ± 0,01 to 1,66 ± 0,01. The total equivalent warming impact for the R438A/R744 system was higher compared to the original system, as a result of the higher GWP for the R438A and higher electrical power consumptions. It has been proven the proposed drop-in, at the high temperature cycle from R134a by R438A, is a less efficient choice for such specific applications.
Dissertação (Mestrado)
Coggins, Charles Lee. "Single- and Multiple-Stage Cascaded Vapor Compression Refrigeration for Electronics Cooling". Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16283.
Pełny tekst źródłaСкрипник, О. В., В. В. Свяцький, O. Skrypnyk i V. Sviatskyi. "Перспективні напрямки технологічного застосування гідратів двооксиду вуглецю". Thesis, ХНТУ, 2017. http://dspace.kntu.kr.ua/jspui/handle/123456789/6869.
Pełny tekst źródłaCipolato, Liza. "Analise exergetica de um ciclo em cascata para liquefação de gas natural". [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266261.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-11T14:06:54Z (GMT). No. of bitstreams: 1 Cipolato_Liza_M.pdf: 1029854 bytes, checksum: e29def5b437d5ad6a00d8fc677c63bf5 (MD5) Previous issue date: 2008
Resumo: O comércio de gás natural liquefeito apresenta um crescente interesse por parte tanto de países exportadores como dependentes desta fonte energética. Apesar de o transporte por gasoduto ser muito menos suscetível a perdas, ele se torna inviável a longas distâncias ou a demandas variáveis. A liquefação do gás natural também proporciona o armazenamento desta fonte energética numa forma estável e de alto potencial energético,evidenciando o caráter estratégico do processo. Desde a década de 60 a tecnologia para liquefação do gás natural é utilizada, porém, apenas há alguns anos os países iniciaram o comércio desta fonte energética em larga escala e isto acarretará um aumento mundial tanto no número de terminais exportadores (plantas de liquefação) quanto importadores (terminais de regaseificação). O processo de liquefação do gás natural ocorre através de uma sequência de ciclos termodinâmicos de refrigeração, e estes, por sua vez, precisam trabalhar de forma otimizada para reduzir perdas. A análise exergética é uma ferramenta muito útil para avaliar estas perdas e pode ser essencial na instalação de uma nova planta ou melhoria de uma já existente. O presente trabalho realizou uma análise exergética de um ciclo de refrigeração utilizado para a liquefação de gás natural, o qual é do tipo multiestágio em cascata, padrão utilizado atualmente, sendo o mais conhecido e difundido entre as indústrias da área. Primeiramente, o processo foi simulado em software comercial Hysys (versão 3.2 da Aspen Technology). O resultado obtido da simulação foi validado através de comparação com dados da literatura, mostrando-se adequado. Em seguida, a simulação foi testada em diferentes condições operacionais, seguindo um planejamento fatorial completo, o qual teve como objetivo verificar a influência da variação das pressões de seis pontos específicos do ciclo sobre a variável resposta, que é a taxa de exergia total destruída no processo, visando sua minimização. Os resultados obtidos levaram a uma nova condição de operação para o ciclo de refrigeração com redução de aproximadamente 48% da taxa de exergia destruída com relação aos dados do caso obtido da literatura. Tal resultado evidencia o potencial da metodologia termodinâmica utilizada, demonstrando sua aplicação em estudos de melhoria do desempenho de ciclos de refrigeração para a indústria de liquefação de gás natural
Abstract: The liquefied natural gas trade shows a growing interest either from countries which are exporters or countries which depend on this kind of energetic source. Although gas pipelines are less susceptible of transportation losses, they become impracticable when distances are too long or when demands are highly variable. The liquefaction of natural gas also enables its storage in a stable way, in which energetic potential is high, expressing the strategic purpose of the process. Since the 1960 decade natural gas liquefying technology is been used, but only a few years ago countries have started the trade of this kind of energetic source on a large scale. Consequently, the number of exporter terminals (liquefaction industries) and importer terminals (regasification plants) will increase worldwide. The natural gas liquefaction process is based on a sequence of refrigeration thermodynamics cycles, which need to work in an optimized way in order to reduce losses. The exergy analysis is a very useful tool to evaluate these losses and can be crucial in a new plant installation or in a current one improvement. This dissertation performed an exergy analysis of a multistage cascade refrigeration cycle applied in natural gas liquefaction. The multistage cascade cycle is currently the standard type, being the most known and diffused among industries. Firstly, the process was simulated in commercial software Hysys (version 3.2 of Aspen Technology). The result obtained from the simulation was validated by comparison with the literature data and showed a very adequate similarity. After that, the simulation was checked in different operational conditions, according to the complete factorial design of experiments. The design of experiments¿ objective was to verify the pressure influence of six specific points of the cycle over the response variable, which is the rate of total exergy destroyed in the cycle, in order to reach its minimal value. The results showed a new operational condition to the refrigeration cycle, in which the destroyed exergy rate was reduced by approximately 48% in comparison with literature data. This result provides evidence of the high potential of the thermodynamic tool used, showing its application in studies of performance improvements for refrigeration cycles in industries of natural gas liquefaction
Mestrado
Sistemas de Processos Quimicos e Informatica
Mestre em Engenharia Química
Goloubev, Dmitri. "Kühlung eines resistiven HTSL-Kurzschlussstrombegrenzers mit einer Gemisch-Joule-Thomson-Kältemaschine". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1095838519812-78347.
Pełny tekst źródłaGoloubev, Dmitri. "Kühlung eines resistiven HTSL-Kurzschlussstrombegrenzers mit einer Gemisch-Joule-Thomson-Kältemaschine". Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24374.
Pełny tekst źródłaKUMAR, PRAKASH. "CASCADE REFRIGERATION CYCLE". Thesis, 2017. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16002.
Pełny tekst źródłaKsiążki na temat "Cascade Refrigeration"
Fulkerson, Frank. Simplified cascade system servicing. Troy, Mich: Business News Pub. Co., 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Cascade Refrigeration"
Ganjehsarabi, Hadi, Ibrahim Dincer i Ali Gungor. "Exergoeconomic Analysis of a Cascade Active Magnetic Regenerative Refrigeration System". W Progress in Exergy, Energy, and the Environment, 69–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_6.
Pełny tekst źródłaGhosh, Ayan, Aditya Sharma, Bharat Varshney, Chirag i Pawan Kumar Kashyap. "A Theoretical Thermodynamic Analysis of R1234yf/CO2 Cascade Refrigeration System". W Lecture Notes in Mechanical Engineering, 57–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8517-1_5.
Pełny tekst źródłaTan, Hüsamettin, i Ali Erişen. "Exergy Analysis of Cascade Refrigeration System for Different Refrigerant Couples". W Springer Proceedings in Energy, 633–42. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30171-1_68.
Pełny tekst źródłaDas, Ipsita, i Samiran Samanta. "Comparative Energetic and Exergetic Analyses of a Cascade Refrigeration System Pairing R744 with R134a, R717, R1234yf, R600, R1234ze, R290". W Advances in Air Conditioning and Refrigeration, 221–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6360-7_20.
Pełny tekst źródłaAmin, Mihir H., Hetav M. Naik, Bidhin B. Patel, Prince K. Patel i Snehal N. Patel. "Exergy and Energy Analyses of Half Effect–Vapor Compression Cascade Refrigeration System". W Information and Communication Technology for Intelligent Systems, 55–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7078-0_6.
Pełny tekst źródłaKumar, Sachin, i Virender Chahal. "A Review of Various Kinds of Cascade Refrigeration Cycle and Application of Ejector Mechanism". W Advances in Materials and Mechanical Engineering, 245–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0673-1_20.
Pełny tekst źródłaSingh, Harvendra, Kaushalendra Kumar Singh i Harshit Bahri. "Performance Analysis and Optimization of Ammonia-CO2 and Ammonia–Propylene Refrigerant Pairs for Cascade Refrigeration". W Lecture Notes in Mechanical Engineering, 15–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3428-4_2.
Pełny tekst źródłaKaushik, Shubhash C., Sudhir K. Tyagi i Pramod Kumar. "Finite Time Thermodynamics of Cascaded Refrigeration and Heat Pump Cycles". W Finite Time Thermodynamics of Power and Refrigeration Cycles, 181–201. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_8.
Pełny tekst źródłaLiu, Ying, Ming Zhao, Ying Rong i Guang Jin. "Thermodynamic analysis of different CO2 cascade refrigeration cycles". W Architectural, Energy and Information Engineering, 117–20. CRC Press, 2015. http://dx.doi.org/10.1201/b19197-29.
Pełny tekst źródłaAlmeida-Trasvina, Fernando, i Robin Smith. "Design and Optimisation of Novel Cascade Refrigeration Cycles for LNG Production". W Computer Aided Chemical Engineering, 621–26. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-444-64235-6.50111-x.
Pełny tekst źródłaStreszczenia konferencji na temat "Cascade Refrigeration"
Quack, Hans H. "Theory of cascade refrigeration". W ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Volume 57. AIP, 2012. http://dx.doi.org/10.1063/1.4706991.
Pełny tekst źródłaALMEIDA QUEIROZ, MARCUS VINICIUS, Arthur Antunes i ENIO BANDARRA FILHO. "EXPERIMENTAL EVALUATION OF A CASCADE REFRIGERATION SYSTEM". W 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0069.
Pełny tekst źródłaXie, Yingbai, Kuikui Cui, Luxiang Zong i Zhichao Wang. "The Entropy Analysis on NH3/CO2 Cascade Refrigeration Cycle". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40121.
Pełny tekst źródłaLiu, Yingfu, Yingzheng Rong i Guangya Jin. "Thermodynamic Analysis of Different CO2 Cascade Refrigeration Cycles". W 2018 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/iceesd-18.2018.227.
Pełny tekst źródłaShyam, Hasanabada, Sunnam Nagaraju, Mallepalli Venkateswar Reddy, Ravi Kiran Chintalapudi i Anil Kumar Reddy Padidam. "Performance evaluation of cascade refrigeration system using different refrigerants". W PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114064.
Pełny tekst źródłaKilicarslan, Ali, i Norbert Mu¨ller. "Irreversibility Analysis of a Vapor Compression Cascade Refrigeration Cycle". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66363.
Pełny tekst źródłaJoão Gabriel de Oliveira Marques i Paulo Eduardo Lopes Barbieri. "EXERGETIC ANALYSIS OF A R717/R744 CASCADE REFRIGERATION SYSTEM". W 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-0420.
Pełny tekst źródłaYang Shi, XueLi Nie, Bei Zhang, Dan Zhou, Jiakai Wang i Zhimin Wang. "Design and experimental investigation on a 150K auto-cascade refrigeration system". W Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930561.
Pełny tekst źródłaNinković, Dimitrije, Uroš Milovančević, Milena Otović i Vladimir Černicin. "Comparative Analysis of Electric Energy Consumption of Cascade System R134a/CO2 with Single Stage R404a and Two-Stage CO2 Installation". W 50th International HVAC&R Congress and Exhibition. SMEITS, 2020. http://dx.doi.org/10.24094/kghk.019.50.1.287.
Pełny tekst źródłaRupesh, P. L., J. M. Babu, D. Surryaprakash i R. D. Misra. "Experimental and computational evaluation of temperature difference of a cascade condenser of R134a-R23 cascade refrigeration system". W 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM). IEEE, 2015. http://dx.doi.org/10.1109/icstm.2015.7225494.
Pełny tekst źródła