Gotowa bibliografia na temat „Cardinality Estimation in Database Systems”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cardinality Estimation in Database Systems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Cardinality Estimation in Database Systems"

1

Kwon, Suyong, Woohwan Jung, and Kyuseok Shim. "Cardinality estimation of approximate substring queries using deep learning." Proceedings of the VLDB Endowment 15, no. 11 (2022): 3145–57. http://dx.doi.org/10.14778/3551793.3551859.

Pełny tekst źródła
Streszczenie:
Cardinality estimation of an approximate substring query is an important problem in database systems. Traditional approaches build a summary from the text data and estimate the cardinality using the summary with some statistical assumptions. Since deep learning models can learn underlying complex data patterns effectively, they have been successfully applied and shown to outperform traditional methods for cardinality estimations of queries in database systems. However, since they are not yet applied to approximate substring queries, we investigate a deep learning approach for cardinality estimation of such queries. Although the accuracy of deep learning models tends to improve as the train data size increases, producing a large train data is computationally expensive for cardinality estimation of approximate substring queries. Thus, we develop efficient train data generation algorithms by avoiding unnecessary computations and sharing common computations. We also propose a deep learning model as well as a novel learning method to quickly obtain an accurate deep learning-based estimator. Extensive experiments confirm the superiority of our data generation algorithms and deep learning model with the novel learning method.
Style APA, Harvard, Vancouver, ISO itp.
2

Qi, Kaiyang, Jiong Yu, and Zhenzhen He. "A Cardinality Estimator in Complex Database Systems Based on TreeLSTM." Sensors 23, no. 17 (2023): 7364. http://dx.doi.org/10.3390/s23177364.

Pełny tekst źródła
Streszczenie:
Cardinality estimation is critical for database management systems (DBMSs) to execute query optimization tasks, which can guide the query optimizer in choosing the best execution plan. However, traditional cardinality estimation methods cannot provide accurate estimates because they cannot accurately capture the correlation between multiple tables. Several recent studies have revealed that learning-based cardinality estimation methods can address the shortcomings of traditional methods and provide more accurate estimates. However, the learning-based cardinality estimation methods still have large errors when an SQL query involves multiple tables or is very complex. To address this problem, we propose a sampling-based tree long short-term memory (TreeLSTM) neural network to model queries. The proposed model addresses the weakness of traditional methods when no sampled tuples match the predicates and considers the join relationship between multiple tables and the conjunction and disjunction operations between predicates. We construct subexpressions as trees using operator types between predicates and improve the performance and accuracy of cardinality estimation by capturing the join-crossing correlations between tables and the order dependencies between predicates. In addition, we construct a new loss function to overcome the drawback that Q-error cannot distinguish between large and small cardinalities. Extensive experimental results from real-world datasets show that our proposed model improves the estimation quality and outperforms traditional cardinality estimation methods and the other compared deep learning methods in three evaluation metrics: Q-error, MAE, and SMAPE.
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Jeremy, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Kenneth Salem. "Accurate Summary-based Cardinality Estimation Through the Lens of Cardinality Estimation Graphs." ACM SIGMOD Record 52, no. 1 (2023): 94–102. http://dx.doi.org/10.1145/3604437.3604458.

Pełny tekst źródła
Streszczenie:
We study two classes of summary-based cardinality estimators that use statistics about input relations and small-size joins: (i) optimistic estimators, which were defined in the context of graph database management systems, that make uniformity and conditional independence assumptions; and (ii) the recent pessimistic estimators that use information theoretic linear programs (LPs). We show that optimistic estimators can be modeled as picking bottom-to-top paths in a cardinality estimation graph (CEG), which contains subqueries as nodes and edges whose weights are average degree statistics. We show that existing optimistic estimators have either undefined or fixed choices for picking CEG paths as their estimates and ignore alternative choices. Instead, we outline a space of optimistic estimators to make an estimate on CEGs, which subsumes existing estimators. We show, using an extensive empirical analysis, that effective paths depend on the structure of the queries. We next show that optimistic estimators and seemingly disparate LP-based pessimistic estimators are in fact connected. Specifically, we show that CEGs can also model some recent pessimistic estimators. This connection allows us to provide insights into the pessimistic estimators, such as showing that they have combinatorial solutions.
Style APA, Harvard, Vancouver, ISO itp.
4

Chen, Jeremy, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Ken Salem. "Accurate summary-based cardinality estimation through the lens of cardinality estimation graphs." Proceedings of the VLDB Endowment 15, no. 8 (2022): 1533–45. http://dx.doi.org/10.14778/3529337.3529339.

Pełny tekst źródła
Streszczenie:
This paper is an experimental and analytical study of two classes of summary-based cardinality estimators that use statistics about input relations and small-size joins in the context of graph database management systems: (i) optimistic estimators that make uniformity and conditional independence assumptions; and (ii) the recent pessimistic estimators that use information theoretic linear programs (LPs). We begin by analyzing how optimistic estimators use pre-computed statistics to generate cardinality estimates. We show these estimators can be modeled as picking bottom-to-top paths in a cardinality estimation graph (CEG), which contains sub-queries as nodes and edges whose weights are average degree statistics. We show that existing optimistic estimators have either undefined or fixed choices for picking CEG paths as their estimates and ignore alternative choices. Instead, we outline a space of optimistic estimators to make an estimate on CEGs, which subsumes existing estimators. We show, using an extensive empirical analysis, that effective paths depend on the structure of the queries. While on acyclic queries and queries with small-size cycles, using the maximum-weight path is effective to address the well known underestimation problem, on queries with larger cycles these estimates tend to overestimate, which can be addressed by using minimum weight paths. We next show that optimistic estimators and seemingly disparate LP-based pessimistic estimators are in fact connected. Specifically, we show that CEGs can also model some recent pessimistic estimators. This connection allows us to adopt an optimization from pessimistic estimators to optimistic ones, and provide insights into the pessimistic estimators, such as showing that they have combinatorial solutions.
Style APA, Harvard, Vancouver, ISO itp.
5

Lan, Hai, Zhifeng Bao, and Yuwei Peng. "A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration." Data Science and Engineering 6, no. 1 (2021): 86–101. http://dx.doi.org/10.1007/s41019-020-00149-7.

Pełny tekst źródła
Streszczenie:
AbstractQuery optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan enumeration. We also provide our insights on the future directions for each of the above aspects.
Style APA, Harvard, Vancouver, ISO itp.
6

Wang, Xiaoying, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. "Are we ready for learned cardinality estimation?" Proceedings of the VLDB Endowment 14, no. 9 (2021): 1640–54. http://dx.doi.org/10.14778/3461535.3461552.

Pełny tekst źródła
Streszczenie:
Cardinality estimation is a fundamental but long unresolved problem in query optimization. Recently, multiple papers from different research groups consistently report that learned models have the potential to replace existing cardinality estimators. In this paper, we ask a forward-thinking question: Are we ready to deploy these learned cardinality models in production? Our study consists of three main parts. Firstly, we focus on the static environment (i.e., no data updates) and compare five new learned methods with nine traditional methods on four real-world datasets under a unified workload setting. The results show that learned models are indeed more accurate than traditional methods, but they often suffer from high training and inference costs. Secondly, we explore whether these learned models are ready for dynamic environments (i.e., frequent data updates). We find that they cannot catch up with fast data updates and return large errors for different reasons. For less frequent updates, they can perform better but there is no clear winner among themselves. Thirdly, we take a deeper look into learned models and explore when they may go wrong. Our results show that the performance of learned methods can be greatly affected by the changes in correlation, skewness, or domain size. More importantly, their behaviors are much harder to interpret and often unpredictable. Based on these findings, we identify two promising research directions (control the cost of learned models and make learned models trustworthy) and suggest a number of research opportunities. We hope that our study can guide researchers and practitioners to work together to eventually push learned cardinality estimators into real database systems.
Style APA, Harvard, Vancouver, ISO itp.
7

Ahad, Rafiul, K. V. Bapa, and Dennis McLeod. "On estimating the cardinality of the projection of a database relation." ACM Transactions on Database Systems 14, no. 1 (1989): 28–40. http://dx.doi.org/10.1145/62032.62034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mukkamala, Ravi, and Sushil Jajodia. "A note on estimating the cardinality of the projection of a database relation." ACM Transactions on Database Systems 16, no. 3 (1991): 564–66. http://dx.doi.org/10.1145/111197.111218.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Li, Guoliang, Xuanhe Zhou, Ji Sun, et al. "openGauss." Proceedings of the VLDB Endowment 14, no. 12 (2021): 3028–42. http://dx.doi.org/10.14778/3476311.3476380.

Pełny tekst źródła
Streszczenie:
Although learning-based database optimization techniques have been studied from academia in recent years, they have not been widely deployed in commercial database systems. In this work, we build an autonomous database framework and integrate our proposed learning-based database techniques into an open-source database system openGauss. We propose effective learning-based models to build learned optimizers (including learned query rewrite, learned cost/cardinality estimation, learned join order selection and physical operator selection) and learned database advisors (including self-monitoring, self-diagnosis, self-configuration, and self-optimization). We devise an effective validation model to validate the effectiveness of learned models. We build effective training data management and model management platforms to easily deploy learned models. We have evaluated our techniques on real-world datasets and the experimental results validated the effectiveness of our techniques. We also provide our learnings of deploying learning-based techniques.
Style APA, Harvard, Vancouver, ISO itp.
10

Woltmann, Lucas, Dominik Olwig, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. "PostCENN." Proceedings of the VLDB Endowment 14, no. 12 (2021): 2715–18. http://dx.doi.org/10.14778/3476311.3476327.

Pełny tekst źródła
Streszczenie:
In this demo, we present PostCENN , an enhanced PostgreSQL database system with an end-to-end integration of machine learning (ML) models for cardinality estimation. In general, cardinality estimation is a topic with a long history in the database community. While traditional models like histograms are extensively used, recent works mainly focus on developing new approaches using ML models. However, traditional as well as ML models have their own advantages and disadvantages. With PostCENN , we aim to combine both to maximize their potentials for cardinality estimation by introducing ML models as a novel means to increase the accuracy of the cardinality estimation for certain parts of the database schema. To achieve this, we integrate ML models as first class citizen in PostgreSQL with a well-defined end-to-end life cycle. This life cycle consists of creating ML models for different sub-parts of the database schema, triggering the training, using ML models within the query optimizer in a transparent way, and deleting ML models.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii