Artykuły w czasopismach na temat „Cardiac stiffness”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cardiac stiffness”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Heller, Lois Jane, David E. Mohrman i Joseph R. Prohaska. "Decreased passive stiffness of cardiac myocytes and cardiac tissue from copper-deficient rat hearts". American Journal of Physiology-Heart and Circulatory Physiology 278, nr 6 (1.06.2000): H1840—H1847. http://dx.doi.org/10.1152/ajpheart.2000.278.6.h1840.
Pełny tekst źródłaSpiteri, Raymond J., i Ryan C. Dean. "Stiffness Analysis of Cardiac Electrophysiological Models". Annals of Biomedical Engineering 38, nr 12 (26.06.2010): 3592–604. http://dx.doi.org/10.1007/s10439-010-0100-9.
Pełny tekst źródłaChilders, Rachel C., Pamela A. Lucchesi i Keith J. Gooch. "Decreased Substrate Stiffness Promotes a Hypofibrotic Phenotype in Cardiac Fibroblasts". International Journal of Molecular Sciences 22, nr 12 (9.06.2021): 6231. http://dx.doi.org/10.3390/ijms22126231.
Pełny tekst źródłaKellermayer, Dalma, Bálint Kiss, Hedvig Tordai, Attila Oláh, Henk L. Granzier, Béla Merkely, Miklós Kellermayer i Tamás Radovits. "Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete’s Heart". International Journal of Molecular Sciences 22, nr 20 (15.10.2021): 11110. http://dx.doi.org/10.3390/ijms222011110.
Pełny tekst źródłaKapelko, V. I., V. I. Veksler, M. I. Popovich i R. Ventura-Clapier. "Energy-linked functional alterations in experimental cardiomyopathies". American Journal of Physiology-Lung Cellular and Molecular Physiology 261, nr 4 (1.10.1991): L39—L44. http://dx.doi.org/10.1152/ajplung.1991.261.4.l39.
Pełny tekst źródłaKapelko, V. I., V. I. Veksler, M. I. Popovich i R. Ventura-Clapier. "Energy-linked functional alterations in experimental cardiomyopathies". American Journal of Physiology-Heart and Circulatory Physiology 261, nr 4 (1.10.1991): 39–44. http://dx.doi.org/10.1152/ajpheart.1991.261.4.39.
Pełny tekst źródłaLaskey, Warren, Saadi Siddiqi, Cheri Wells i Richard Lueker. "Improvement in arterial stiffness following cardiac rehabilitation". International Journal of Cardiology 167, nr 6 (wrzesień 2013): 2734–38. http://dx.doi.org/10.1016/j.ijcard.2012.06.104.
Pełny tekst źródłaZanoli, Luca, Paolo Lentini, Marie Briet, Pietro Castellino, Andrew A. House, Gerard M. London, Lorenzo Malatino, Peter A. McCullough, Dimitri P. Mikhailidis i Pierre Boutouyrie. "Arterial Stiffness in the Heart Disease of CKD". Journal of the American Society of Nephrology 30, nr 6 (30.04.2019): 918–28. http://dx.doi.org/10.1681/asn.2019020117.
Pełny tekst źródłaBrady, A. J., i S. P. Farnsworth. "Cardiac myocyte stiffness following extraction with detergent and high salt solutions". American Journal of Physiology-Heart and Circulatory Physiology 250, nr 6 (1.06.1986): H932—H943. http://dx.doi.org/10.1152/ajpheart.1986.250.6.h932.
Pełny tekst źródłaRoos, K. P., i A. J. Brady. "Stiffness and shortening changes in myofilament-extracted rat cardiac myocytes". American Journal of Physiology-Heart and Circulatory Physiology 256, nr 2 (1.02.1989): H539—H551. http://dx.doi.org/10.1152/ajpheart.1989.256.2.h539.
Pełny tekst źródłaLiatis, S., K. Alexiadou, A. Tsiakou, K. Makrilakis, N. Katsilambros i N. Tentolouris. "Cardiac Autonomic Function Correlates with Arterial Stiffness in the Early Stage of Type 1 Diabetes". Experimental Diabetes Research 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/957901.
Pełny tekst źródłaZhu, Tong, Jingjing Song, Bin Gao, Junjie Zhang, Yabei Li, Zhaoyang Ye, Yuxiang Zhao, Xiaogang Guo, Feng Xu i Fei Li. "Effect of Extracellular Matrix Stiffness on Candesartan Efficacy in Anti-Fibrosis and Antioxidation". Antioxidants 12, nr 3 (9.03.2023): 679. http://dx.doi.org/10.3390/antiox12030679.
Pełny tekst źródłaLartaud-Idjouadiene, I., N. Niederhoffer, J. J. Debets, H. A. Struyker-Boudier, J. Atkinson i J. F. Smits. "Cardiac function in a rat model of chronic aortic stiffness". American Journal of Physiology-Heart and Circulatory Physiology 272, nr 5 (1.05.1997): H2211—H2218. http://dx.doi.org/10.1152/ajpheart.1997.272.5.h2211.
Pełny tekst źródłaEVESON, David J., Thompson G. ROBINSON, Nainal S. SHAH, Ronney B. PANERAI, Sanjoy K. PAUL i John F. POTTER. "Abnormalities in cardiac baroreceptor sensitivity in acute ischaemic stroke patients are related to aortic stiffness". Clinical Science 108, nr 5 (22.04.2005): 441–47. http://dx.doi.org/10.1042/cs20040264.
Pełny tekst źródłaCaenen, Annette, Mathieu Pernot, Kathryn R. Nightingale, Jens-Uwe Voigt, Hendrik J. Vos, Patrick Segers i Jan D’hooge. "Assessing cardiac stiffness using ultrasound shear wave elastography". Physics in Medicine & Biology 67, nr 2 (17.01.2022): 02TR01. http://dx.doi.org/10.1088/1361-6560/ac404d.
Pełny tekst źródłaSerhiyenko, Victoria A., Ludmila M. Serhiyenko, Volodymyr B. Sehin i Alexandr A. Serhiyenko. "Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview". Endocrine Regulations 56, nr 4 (1.10.2022): 284–94. http://dx.doi.org/10.2478/enr-2022-0031.
Pełny tekst źródłaGORGULU, Sevket, Nevzat USLU, Mehmet EREN, Seden CELIK, Aydın YILDIRIM, Bahadır DAGDEVIREN i Tuna TEZEL. "Aortic stiffness in patients with cardiac syndrome X". Acta Cardiologica 58, nr 6 (1.12.2003): 507–11. http://dx.doi.org/10.2143/ac.58.6.2005314.
Pełny tekst źródłaHamdani, Nazha, i Wolfgang A. Linke. "Myocardial Titin: An Important Modifier of Cardiac Stiffness". Biophysical Journal 106, nr 2 (styczeń 2014): 346a. http://dx.doi.org/10.1016/j.bpj.2013.11.1972.
Pełny tekst źródłaSpiteri, Raymond J., i Ryan C. Dean. "Erratum to: Stiffness Analysis of Cardiac Electrophysiological Models". Annals of Biomedical Engineering 40, nr 7 (8.05.2012): 1622–25. http://dx.doi.org/10.1007/s10439-011-0488-x.
Pełny tekst źródłaNemes, Attila, Dóra Földeák, Péter Domsik, Anita Kalapos, Árpád Kormányos, Zita Borbényi i Tamás Forster. "Cardiac amyloidosis is associated with increased aortic stiffness". Journal of Clinical Ultrasound 46, nr 3 (24.10.2017): 183–87. http://dx.doi.org/10.1002/jcu.22547.
Pełny tekst źródłaGao, Likun, Yanlin He, Hangwei Zhu, Guangkai Sun i Lianqing Zhu. "Stiffness Modelling and Performance Evaluation of a Soft Cardiac Fixator Flexible Arm with Granular Jamming". Machines 9, nr 12 (23.11.2021): 303. http://dx.doi.org/10.3390/machines9120303.
Pełny tekst źródłaLi, Jieli, Michael A. Mkrtschjan, Ying-Hsi Lin i Brenda Russell. "Variation in stiffness regulates cardiac myocyte hypertrophy via signaling pathways". Canadian Journal of Physiology and Pharmacology 94, nr 11 (listopad 2016): 1178–86. http://dx.doi.org/10.1139/cjpp-2015-0578.
Pełny tekst źródłaBrady, A. J. "Length dependence of passive stiffness in single cardiac myocytes". American Journal of Physiology-Heart and Circulatory Physiology 260, nr 4 (1.04.1991): H1062—H1071. http://dx.doi.org/10.1152/ajpheart.1991.260.4.h1062.
Pełny tekst źródłaOstroumova, O. D., i A. I. Kochetkov. "Myocardial Strain and Stiffness Parameters as a Novel Target of Antihypertensive Treatment". Kardiologiia 58, nr 11 (24.11.2018): 72–81. http://dx.doi.org/10.18087/cardio.2018.11.10203.
Pełny tekst źródłaIhne-Schubert, Sandra Michaela, Oliver Goetze, Felix Gerstendörfer, Floran Sahiti, Ina Schade, Aikaterini Papagianni, Caroline Morbach i in. "Cardio-Hepatic Interaction in Cardiac Amyloidosis". Journal of Clinical Medicine 13, nr 5 (1.03.2024): 1440. http://dx.doi.org/10.3390/jcm13051440.
Pełny tekst źródłaArani, Arvin, Shivaram P. Arunachalam, Ian C. Y. Chang, Francis Baffour, Phillip J. Rossman, Kevin J. Glaser, Joshua D. Trzasko i in. "Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis". Journal of Magnetic Resonance Imaging 46, nr 5 (25.02.2017): 1361–67. http://dx.doi.org/10.1002/jmri.25678.
Pełny tekst źródłaYong, Kar Wey, YuHui Li, GuoYou Huang, Tian Jian Lu, Wan Kamarul Zaman Wan Safwani, Belinda Pingguan-Murphy i Feng Xu. "Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy". American Journal of Physiology-Heart and Circulatory Physiology 309, nr 4 (15.08.2015): H532—H542. http://dx.doi.org/10.1152/ajpheart.00299.2015.
Pełny tekst źródłaBrozic, Anka P., Susan Marzolini i Jack M. Goodman. "Effects of an adapted cardiac rehabilitation programme on arterial stiffness in patients with type 2 diabetes without cardiac disease diagnosis". Diabetes and Vascular Disease Research 14, nr 2 (17.01.2017): 104–12. http://dx.doi.org/10.1177/1479164116679078.
Pełny tekst źródłaWoodiwiss, A. J., i G. R. Norton. "Exercise-induced cardiac hypertrophy is associated with an increased myocardial compliance". Journal of Applied Physiology 78, nr 4 (1.04.1995): 1303–11. http://dx.doi.org/10.1152/jappl.1995.78.4.1303.
Pełny tekst źródłaKrishnamurthy, Gaurav, Akinobu Itoh, Julia C. Swanson, D. Craig Miller i Neil B. Ingels. "Transient stiffening of mitral valve leaflets in the beating heart". American Journal of Physiology-Heart and Circulatory Physiology 298, nr 6 (czerwiec 2010): H2221—H2225. http://dx.doi.org/10.1152/ajpheart.00215.2010.
Pełny tekst źródłaMorgan, Eric E., Michael P. Morran, Nicholas G. Horen, David A. Weaver i Andrea L. Nestor-Kalinoski. "RNO3 QTL regulates vascular structure and arterial stiffness in the spontaneously hypertensive rat". Physiological Genomics 53, nr 12 (1.12.2021): 534–45. http://dx.doi.org/10.1152/physiolgenomics.00038.2021.
Pełny tekst źródłaLeite-Moreira, Adelino F., Silvia-Marta Oliveira i Paolo Marino. "Left atrial stiffness and its implications for cardiac function". Future Cardiology 3, nr 2 (marzec 2007): 175–83. http://dx.doi.org/10.2217/14796678.3.2.175.
Pełny tekst źródłaHashimoto, Yuto, i Takanobu Okamoto. "Relationship Between Arterial Stiffness And Cardiac Function In Athletes". Medicine & Science in Sports & Exercise 51, Supplement (czerwiec 2019): 670. http://dx.doi.org/10.1249/01.mss.0000562506.99507.e1.
Pełny tekst źródłaMilazzo, Valeria, Simona Maule, Cristina Di Stefano, Francesco Tosello, Silvia Totaro, Franco Veglio i Alberto Milan. "Cardiac Organ Damage and Arterial Stiffness in Autonomic Failure". Hypertension 66, nr 6 (grudzień 2015): 1168–75. http://dx.doi.org/10.1161/hypertensionaha.115.05913.
Pełny tekst źródłaJia, Guanghong, Annayya R. Aroor i James R. Sowers. "Arterial Stiffness: A Nexus between Cardiac and Renal Disease". Cardiorenal Medicine 4, nr 1 (2014): 60–71. http://dx.doi.org/10.1159/000360867.
Pełny tekst źródłaChristensen, Tova, Kristi Anseth i Leslie Leinwand. "Matrix Stiffness Contributes to Pathological Activation of Cardiac Fibroblasts". Biophysical Journal 114, nr 3 (luty 2018): 110a. http://dx.doi.org/10.1016/j.bpj.2017.11.635.
Pełny tekst źródłaKHOZYAINOVA, N. "The arterial stiffness and cardiac remodeling in hypertensive patients". American Journal of Hypertension 17, nr 5 (maj 2004): S166. http://dx.doi.org/10.1016/j.amjhyper.2004.03.436.
Pełny tekst źródłaHolewijn, Suzanne, Erik Groot Jebbink, Wim Aengevaeren, Jasper Martens, Marcel Hovens i Michel Reijnen. "8.1 ARTERIAL STIFFNESS, BLOOD PRESSURE AND CARDIAC OUTPUT STUDY". Artery Research 16, nr C (2016): 65. http://dx.doi.org/10.1016/j.artres.2016.10.057.
Pełny tekst źródłaWesley, Callan D., Annarita Sansonetti, Cedric H. G. Neutel, Dustin N. Krüger, Guido R. Y. De Meyer, Wim Martinet i Pieter-Jan Guns. "Short-Term Proteasome Inhibition: Assessment of the Effects of Carfilzomib and Bortezomib on Cardiac Function, Arterial Stiffness, and Vascular Reactivity". Biology 13, nr 10 (21.10.2024): 844. http://dx.doi.org/10.3390/biology13100844.
Pełny tekst źródłaEmre, Ender, Gulay Uzun, Ahmet Özderya, Mustafa Çetin, Muhammet Raşit Sayın i Ezgi Kalaycıoğlu. "Exercise-Based Cardiac Rehabilitation Reduced Arterial Stiffness in Patients with Coronary Artery Disease, determined by CAVI method “Cardiac Rehabilitation Reduced Arterial Stiffness”". Kocaeli Medical Journal 12, nr 1 (2023): 158–65. http://dx.doi.org/10.5505/ktd.2023.81593.
Pełny tekst źródłaHerrmann, Keith L., Andrew D. McCulloch i Jeffrey H. Omens. "Glycated collagen cross-linking alters cardiac mechanics in volume-overload hypertrophy". American Journal of Physiology-Heart and Circulatory Physiology 284, nr 4 (1.04.2003): H1277—H1284. http://dx.doi.org/10.1152/ajpheart.00168.2002.
Pełny tekst źródłaAllijn, Iris, Marcelo Ribeiro, André Poot, Robert Passier i Dimitrios Stamatialis. "Membranes for Modelling Cardiac Tissue Stiffness In Vitro Based on Poly(trimethylene carbonate) and Poly(ethylene glycol) Polymers". Membranes 10, nr 10 (3.10.2020): 274. http://dx.doi.org/10.3390/membranes10100274.
Pełny tekst źródłaJaccard, Arnaud, Anne Cypierre, Annick Rousseau, Fatima Yagoubi, Julie Abraham, Annie Lefebvre, Elisabeth Vidal, Dominique Bordessoule i Véronique Loustaud-Ratti. "Transient Elastography (FibroScan®) for Noninvasive Assessment of Liver Amyloidosis." Blood 114, nr 22 (20.11.2009): 4894. http://dx.doi.org/10.1182/blood.v114.22.4894.4894.
Pełny tekst źródłaLeijendekker, W. J., W. D. Gao i H. E. ter Keurs. "Unstimulated force during hypoxia of rat cardiac muscle: stiffness and calcium dependence". American Journal of Physiology-Heart and Circulatory Physiology 258, nr 3 (1.03.1990): H861—H869. http://dx.doi.org/10.1152/ajpheart.1990.258.3.h861.
Pełny tekst źródłaWinau, Lea, Rocio Hinojar Baydes, Axel Braner, Ulrich Drott, Harald Burkhardt, Shirish Sangle, David P. D’Cruz i in. "High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus". Annals of the Rheumatic Diseases 77, nr 11 (4.08.2018): 1590–98. http://dx.doi.org/10.1136/annrheumdis-2018-213661.
Pełny tekst źródłaDi Lisi, Daniela, Filippo Brighina, Girolamo Manno, Francesco Comparato, Vincenzo Di Stefano, Francesca Macaione, Giuseppe Damerino i in. "Hereditary Transthyretin Amyloidosis: How to Differentiate Carriers and Patients Using Speckle-Tracking Echocardiography". Diagnostics 13, nr 24 (9.12.2023): 3634. http://dx.doi.org/10.3390/diagnostics13243634.
Pełny tekst źródłaBalani, Kantesh, Flavia C. Brito, Lidia Kos i Arvind Agarwal. "Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet". Journal of The Royal Society Interface 6, nr 40 (8.07.2009): 1097–102. http://dx.doi.org/10.1098/rsif.2009.0174.
Pełny tekst źródłaHu, Min, Shen Wang, Dan Wang, Qinhao Lai, Xiaoying Chen, Shiwei Duan, Mengke Zhao i Junhao Huang. "Combined moderate and high intensity exercise with dietary restriction improves cardiac autonomic function associated with a reduction in central and systemic arterial stiffness in obese adults: a clinical trial". PeerJ 5 (5.10.2017): e3900. http://dx.doi.org/10.7717/peerj.3900.
Pełny tekst źródłaShalini Sharma, Vikram Kala, Vivek Sharma, Prerna Panjeta. "Aortic Stiffness is Associated with Cardiac Function and Cerebral Blood Flow Pulsatility in Type2 Diabetes Mellitus". International Journal of Physiology 7, nr 3 (25.07.2019): 251–56. http://dx.doi.org/10.37506/ijop.v7i3.180.
Pełny tekst źródłaBupha-Intr, Tepmanas, Ye Win Oo i Jonggonnee Wattanapermpool. "Increased myocardial stiffness with maintenance of length-dependent calcium activation by female sex hormones in diabetic rats". American Journal of Physiology-Heart and Circulatory Physiology 300, nr 5 (maj 2011): H1661—H1668. http://dx.doi.org/10.1152/ajpheart.00411.2010.
Pełny tekst źródła