Artykuły w czasopismach na temat „Carbonic nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carbonic nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Demchenko, Alexander. "Excitons in Carbonic Nanostructures". C — Journal of Carbon Research 5, nr 4 (12.11.2019): 71. http://dx.doi.org/10.3390/c5040071.
Pełny tekst źródłaLizoňová, Denisa, Monika Majerská, Vlastimil Král, Michal Pechar, Robert Pola, Marek Kovář i František Štěpánek. "Antibody-pHPMA functionalised fluorescent silica nanoparticles for colorectal carcinoma targeting". RSC Advances 8, nr 39 (2018): 21679–89. http://dx.doi.org/10.1039/c8ra03487g.
Pełny tekst źródłaClark, Andrew J., Devin T. Wiley, Jonathan E. Zuckerman, Paul Webster, Joseph Chao, James Lin, Yun Yen i Mark E. Davis. "CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing". Proceedings of the National Academy of Sciences 113, nr 14 (21.03.2016): 3850–54. http://dx.doi.org/10.1073/pnas.1603018113.
Pełny tekst źródłaMikolajczak, Dorian J., i Beate Koksch. "Peptide–Gold Nanoparticle Conjugates as Artificial Carbonic Anhydrase Mimics". Catalysts 9, nr 11 (29.10.2019): 903. http://dx.doi.org/10.3390/catal9110903.
Pełny tekst źródłaGößl, Dorothée, Helena Singer, Hsin-Yi Chiu, Alexandra Schmidt, Martina Lichtnecker, Hanna Engelke i Thomas Bein. "Highly active enzymes immobilized in large pore colloidal mesoporous silica nanoparticles". New Journal of Chemistry 43, nr 4 (2019): 1671–80. http://dx.doi.org/10.1039/c8nj04585b.
Pełny tekst źródłaAlhumaydhi, Fahad A. "Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their In Vitro and In Vivo Biological Activities". Journal of Nanomaterials 2022 (30.06.2022): 1–11. http://dx.doi.org/10.1155/2022/5544475.
Pełny tekst źródłaVinoba, Mari, Margandan Bhagiyalakshmi, Soon Kwan Jeong, Sung Chan Nam i Yeoil Yoon. "Carbonic Anhydrase Immobilized on Encapsulated Magnetic Nanoparticles for CO2Sequestration". Chemistry - A European Journal 18, nr 38 (9.08.2012): 12028–34. http://dx.doi.org/10.1002/chem.201201112.
Pełny tekst źródłaCabaleiro-Lago, Celia, i Martin Lundqvist. "The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II". Molecules 25, nr 19 (25.09.2020): 4405. http://dx.doi.org/10.3390/molecules25194405.
Pełny tekst źródłaBugárová, Nikola, Zdenko Špitálsky, Matej Mičušík, Michal Bodík, Peter Šiffalovič, Martina Koneracká, Vlasta Závišová i in. "A Multifunctional Graphene Oxide Platform for Targeting Cancer". Cancers 11, nr 6 (29.05.2019): 753. http://dx.doi.org/10.3390/cancers11060753.
Pełny tekst źródłaDuart, Marcelo Adriano, Oscar Endrigo Dorneles Rodrigues i Sérgio Roberto Mortari. "Carbonic nanoparticles and C-S-H insertion into cementitious nanocomposite". International Journal of Advanced Engineering Research and Science 5, nr 5 (2018): 14–19. http://dx.doi.org/10.22161/ijaers.5.5.2.
Pełny tekst źródłaAssarsson, Anna, Isabel Pastoriza-Santos i Celia Cabaleiro-Lago. "Inactivation and Adsorption of Human Carbonic Anhydrase II by Nanoparticles". Langmuir 30, nr 31 (28.07.2014): 9448–56. http://dx.doi.org/10.1021/la501413r.
Pełny tekst źródłaTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi i Jean-Yves Winum. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases". Chemistry - A European Journal 21, nr 29 (12.05.2015): 10306–9. http://dx.doi.org/10.1002/chem.201501037.
Pełny tekst źródłaTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi i Jean-Yves Winum. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases". Chemistry - A European Journal 21, nr 29 (8.06.2015): 10249. http://dx.doi.org/10.1002/chem.201501917.
Pełny tekst źródłaNovikov, Ilya V., Marina A. Pigaleva, Sergei S. Abramchuk, Vyacheslav S. Molchanov, Olga E. Philippova i Marat O. Gallyamov. "Chitosan composites with Ag nanoparticles formed in carbonic acid solutions". Carbohydrate Polymers 190 (czerwiec 2018): 103–12. http://dx.doi.org/10.1016/j.carbpol.2018.02.076.
Pełny tekst źródłaTatiparti, Katyayani, Mohd Ahmar Rauf, Samaresh Sau i Arun K. Iyer. "Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor". Molecules 25, nr 10 (19.05.2020): 2362. http://dx.doi.org/10.3390/molecules25102362.
Pełny tekst źródłaDoğan, Murat, Ümit Muhammet Koçyiğit, Duygu Taşkın, Beyza Nur Yılmaz i Turgut Taşkın. "Preparation and characterization of chitosan nanoparticles with extracts of Rheum ribes, evaluation of biological activities of extracts and extract loaded nanoparticles". International Journal of Secondary Metabolite 11, nr 4 (9.09.2024): 751–64. http://dx.doi.org/10.21448/ijsm.1425978.
Pełny tekst źródłaBillsten, Peter, Uno Carlsson, Bengt Harald Jonsson, Gerd Olofsson, Fredrik Höök i Hans Elwing. "Conformation of Human Carbonic Anhydrase II Variants Adsorbed to Silica Nanoparticles". Langmuir 15, nr 19 (wrzesień 1999): 6395–99. http://dx.doi.org/10.1021/la980288u.
Pełny tekst źródłaAko-Adounvo, Ann-Marie, i Pradeep K. Karla. "Preparation and In Vitro Testing of Brinzolamide-Loaded Poly Lactic-Co-Glycolic Acid (PLGA) Nanoparticles for Sustained Drug Delivery". Journal of Clinical & Translational Ophthalmology 2, nr 1 (9.01.2024): 1–14. http://dx.doi.org/10.3390/jcto2010001.
Pełny tekst źródłaAntal, Iryna, Martina Koneracka, Martina Kubovcikova, Vlasta Zavisova, Alena Jurikova, Iryna Khmara, Maria Omastova i in. "Targeting of carbonic anhydrase IX-positive cancer cells by glycine-coated superparamagnetic nanoparticles". Colloids and Surfaces B: Biointerfaces 205 (wrzesień 2021): 111893. http://dx.doi.org/10.1016/j.colsurfb.2021.111893.
Pełny tekst źródłaTalebzadeh, Zeinab, Qahtan A. Yousif, Maryam Masjedi-Arani i Masoud Salavati-Niasari. "Sonochemistry fabrication of Er2Sn2O7 nanoparticles with advanced photocatalytic performance of their carbonic nanocomposites". International Journal of Hydrogen Energy 47, nr 25 (marzec 2022): 12615–28. http://dx.doi.org/10.1016/j.ijhydene.2022.02.025.
Pełny tekst źródłaShatokhin, A. N., A. V. Egorov, K. I. Maslakov i F. N. Putilin. "Laser synthesis of metal–metaloxide nanoparticles on carbonic materials in an electric field". Bulletin of the Russian Academy of Sciences: Physics 80, nr 4 (kwiecień 2016): 387–92. http://dx.doi.org/10.3103/s1062873816040286.
Pełny tekst źródłaAl-Dhrub, Ahmed Hussein Ali, Selmihan Sahin, Ismail Ozmen, Ekrem Tunca i Metin Bulbul. "Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles". Process Biochemistry 57 (czerwiec 2017): 95–104. http://dx.doi.org/10.1016/j.procbio.2017.03.025.
Pełny tekst źródłaYadav, Renu, Meenal Joshi, Snehal Wanjari, Chandan Prabhu, Swati Kotwal, T. Satyanarayanan i Sadhana Rayalu. "Immobilization of Carbonic Anhydrase on Chitosan Stabilized Iron Nanoparticles for the Carbonation Reaction". Water, Air, & Soil Pollution 223, nr 8 (2.09.2012): 5345–56. http://dx.doi.org/10.1007/s11270-012-1284-4.
Pełny tekst źródłaNovikov, Ilya V., Marina A. Pigaleva, Eduard E. Levin, Sergei S. Abramchuk, Alexander V. Naumkin, Helin Li, Andrij Pich i Marat O. Gallyamov. "The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions". Colloid and Polymer Science 298, nr 9 (16.06.2020): 1135–48. http://dx.doi.org/10.1007/s00396-020-04683-8.
Pełny tekst źródłaNie, Guo Chao, Di Si, Gwang Seong Kim, Zhong You Shi, Tanvi Siraj Ratani, Yong Eun Koo Lee i Raoul Kopelman. "A Novel Nonionic, Multi-Surfactant System and Separation Method for the Synthesis of Active Carbonic Anhydrase Nanoparticles". Advanced Materials Research 399-401 (listopad 2011): 509–13. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.509.
Pełny tekst źródłaBodor, Marius, Rafael M. Santos, Yi Wai Chiang, Maria Vlad i Tom Van Gerven. "Impacts of Nickel Nanoparticles on Mineral Carbonation". Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/921974.
Pełny tekst źródłaAntipov, S. A., T. A. Feduschak, O. V. Kokorev, Ye A. Gereng, G. Ts Dambayev, A. Ye Yermakov, M. A. Uymin i I. A. Khlusov. "Antitumor in vitro and in vivo effects of lipid composites of cisplatin and ferromagnetic nanoparticles capsulated by carbonic coating". Bulletin of Siberian Medicine 9, nr 1 (28.02.2010): 9–16. http://dx.doi.org/10.20538/1682-0363-2010-1-9-16.
Pełny tekst źródłaPerfetto, Rosa, Sonia Del Prete, Daniela Vullo, Giovanni Sansone, Carmela M. A. Barone, Mosè Rossi, Claudiu T. Supuran i Clemente Capasso. "Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles". Journal of Enzyme Inhibition and Medicinal Chemistry 32, nr 1 (1.01.2017): 759–66. http://dx.doi.org/10.1080/14756366.2017.1316719.
Pełny tekst źródłaPeirce, S., M. E. Russo, R. Perfetto, C. Capasso, M. Rossi, R. Fernandez-Lafuente, P. Salatino i A. Marzocchella. "Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture". Biochemical Engineering Journal 138 (październik 2018): 1–11. http://dx.doi.org/10.1016/j.bej.2018.06.017.
Pełny tekst źródłaKhatibi, Ali, Leila Ma’mani, Reza Khodarahmi, Abbas Shafiee, Parvaneh Maghami, Faizan Ahmad, Nader Sheibani i Ali Akbar Moosavi-Movahedi. "Enhancement of thermal reversibility and stability of human carbonic anhydrase II by mesoporous nanoparticles". International Journal of Biological Macromolecules 75 (kwiecień 2015): 67–72. http://dx.doi.org/10.1016/j.ijbiomac.2015.01.019.
Pełny tekst źródłaNogalska, Adrianna, Mario Ammendola, Carla A. M. Portugal, Bartosz Tylkowski, Joao G. Crespo i Ricard Garcia – Valls. "Polysulfone biomimetic membrane for CO2 capture". Functional Materials Letters 11, nr 05 (październik 2018): 1850046. http://dx.doi.org/10.1142/s1793604718500467.
Pełny tekst źródłaBurunkova, J. A., I. Y. Denisyuk, Vera Bulgakova i Sandor Kokenyesi. "TiO2-Acrylate Nanocomposites Elaborated by UV-Curing with Tunable Properties". Solid State Phenomena 200 (kwiecień 2013): 173–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.200.173.
Pełny tekst źródłaStamer, Katerina S., Marina A. Pigaleva, Anastasiya A. Pestrikova, Alexander Y. Nikolaev, Alexander V. Naumkin, Sergei S. Abramchuk, Vera S. Sadykova, Anastasia E. Kuvarina, Valeriya N. Talanova i Marat O. Gallyamov. "Water Saturated with Pressurized CO2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles". Molecules 27, nr 21 (26.10.2022): 7261. http://dx.doi.org/10.3390/molecules27217261.
Pełny tekst źródłaStamer, K. S., M. A. Pigaleva, S. S. Abramchuk i M. O. Gallyamov. "Principles of Gold Nanoparticles Stabilization with Chitosan in Carbonic Acid Solutions Under High CO2 Pressure". Doklady Physical Chemistry 495, nr 1 (listopad 2020): 166–70. http://dx.doi.org/10.1134/s0012501620110020.
Pełny tekst źródłaLundqvist, Martin, Cecilia Andresen, Sara Christensson, Sara Johansson, Martin Karlsson, Klas Broo i Bengt-Harald Jonsson. "Proteolytic Cleavage Reveals Interaction Patterns between Silica Nanoparticles and Two Variants of Human Carbonic Anhydrase". Langmuir 21, nr 25 (grudzień 2005): 11903–6. http://dx.doi.org/10.1021/la050477u.
Pełny tekst źródłaAhmadi, Mohammad Taghi, Neda Mousavi, Truong Khang Nguyen, Seyed Saeid Rahimian Koloor i Michal Petrů. "Carbon Nanoparticle-Based Electro-Thermal Building Block". Applied Sciences 10, nr 15 (25.07.2020): 5117. http://dx.doi.org/10.3390/app10155117.
Pełny tekst źródłaYong, Joel K. J., Jiwei Cui, Kwun Lun Cho, Geoff W. Stevens, Frank Caruso i Sandra E. Kentish. "Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration". Langmuir 31, nr 22 (28.05.2015): 6211–19. http://dx.doi.org/10.1021/acs.langmuir.5b01020.
Pełny tekst źródłaTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi i Jean-Yves Winum. "Cover Picture: Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases (Chem. Eur. J. 29/2015)". Chemistry - A European Journal 21, nr 29 (2.07.2015): 10245. http://dx.doi.org/10.1002/chem.201590127.
Pełny tekst źródłaAkiyoshi, Kazunari, Yoshihiro Sasaki i Junzo Sunamoto. "Molecular Chaperone-Like Activity of Hydrogel Nanoparticles of Hydrophobized Pullulan: Thermal Stabilization with Refolding of Carbonic Anhydrase B". Bioconjugate Chemistry 10, nr 3 (maj 1999): 321–24. http://dx.doi.org/10.1021/bc9801272.
Pełny tekst źródłaBillsten, Peter, Per-Ola Freskgård, Uno Carlsson, Bengt-Harald Jonsson i Hans Elwing. "Adsorption to silica nanoparticles of human carbonic anhydrase II and truncated forms induce a molten-globule-like structure". FEBS Letters 402, nr 1 (3.02.1997): 67–72. http://dx.doi.org/10.1016/s0014-5793(96)01431-7.
Pełny tekst źródłaAssarsson, A., I. Nasir, M. Lundqvist i C. Cabaleiro-Lago. "Kinetic and thermodynamic study of the interactions between human carbonic anhydrase variants and polystyrene nanoparticles of different size". RSC Advances 6, nr 42 (2016): 35868–74. http://dx.doi.org/10.1039/c6ra06175c.
Pełny tekst źródłaFarah M. Ghazal, Muna H. Jankeer i Hafidh I. Al-Sadi. "Effect of Multi-Walled Carbon Nanotubes on lung tissue and concentration of enzyme Carbonic anhydrase in the New Zealand white rabbit". Tikrit Journal of Pure Science 22, nr 3 (27.01.2023): 49–57. http://dx.doi.org/10.25130/tjps.v22i3.711.
Pełny tekst źródłaGómez-Ballesteros, Miguel, Vanessa Andrés-Guerrero, Francisco Parra, Jorge Marinich, Beatriz de-las-Heras, Irene Molina-Martínez, Blanca Vázquez-Lasa, Julio San Román i Rocío Herrero-Vanrell. "Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers". Polymers 11, nr 7 (19.07.2019): 1213. http://dx.doi.org/10.3390/polym11071213.
Pełny tekst źródłaYadav, Raman P., Sveeta V. Mhatre i Amita A. Bhagit. "Biofabrication of Bifunctional Cerium Oxide Nanoparticles using Phaseolus vulgaris with Enhanced Antioxidant and Carbonic Anhydrase Class 1 Inhibitory Activity". MGM Journal of Medical Sciences 3, nr 4 (2016): 161–66. http://dx.doi.org/10.5005/jp-journals-10036-1117.
Pełny tekst źródłaNasir, Irem, Martin Lundqvist i Celia Cabaleiro-Lago. "Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase". Nanoscale 7, nr 41 (2015): 17504–15. http://dx.doi.org/10.1039/c5nr05360a.
Pełny tekst źródłaZhang, Shihan, Yongqi Lu i Xinhuai Ye. "Catalytic behavior of carbonic anhydrase enzyme immobilized onto nonporous silica nanoparticles for enhancing CO2 absorption into a carbonate solution". International Journal of Greenhouse Gas Control 13 (marzec 2013): 17–25. http://dx.doi.org/10.1016/j.ijggc.2012.12.010.
Pełny tekst źródłaSarah Abbas Hussein Al-saeed, Muhammed Mizher Radhi i Zuhair Numan Hamed. "A Study into the Electrochemical Behavior of Nano Antibiotics as A Promising Treatment for Helicobacter Pylori Infection by Cyclic Voltammetry". Journal of Techniques 4, nr 33 (15.11.2022): 12–20. http://dx.doi.org/10.51173/jt.v4i33.548.
Pełny tekst źródłaTatiparti, Katyayani, Samaresh Sau, Kaustubh Gawde i Arun Iyer. "Copper-Free ‘Click’ Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia". International Journal of Molecular Sciences 19, nr 3 (13.03.2018): 838. http://dx.doi.org/10.3390/ijms19030838.
Pełny tekst źródłaStiti, Maamar, Alessandro Cecchi, Marouan Rami, Mohamed Abdaoui, Véronique Barragan-Montero, Andrea Scozzafava, Yannick Guari, Jean-Yves Winum i Claudiu T. Supuran. "Carbonic Anhydrase Inhibitor Coated Gold Nanoparticles Selectively Inhibit the Tumor-Associated Isoform IX over the Cytosolic Isozymes I and II". Journal of the American Chemical Society 130, nr 48 (3.12.2008): 16130–31. http://dx.doi.org/10.1021/ja805558k.
Pełny tekst źródłaSaada, Mohamed-Chiheb, Jean-Louis Montero, Daniela Vullo, Andrea Scozzafava, Jean-Yves Winum i Claudiu T. Supuran. "Carbonic Anhydrase Activators: Gold Nanoparticles Coated with Derivatized Histamine, Histidine, and Carnosine Show Enhanced Activatory Effects on Several Mammalian Isoforms". Journal of Medicinal Chemistry 54, nr 5 (10.03.2011): 1170–77. http://dx.doi.org/10.1021/jm101284a.
Pełny tekst źródła