Artykuły w czasopismach na temat „Carbonaceous nanostructures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carbonaceous nanostructures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mansoori Mosleh, Fazel, Yadollah Mortazavi, Negahdar Hosseinpour i Abbas Ali Khodadadi. "Asphaltene Adsorption onto Carbonaceous Nanostructures". Energy & Fuels 34, nr 1 (5.12.2019): 211–24. http://dx.doi.org/10.1021/acs.energyfuels.9b03466.
Pełny tekst źródłaYU, M. S., S. Y. CHENG, Y. C. LIN i W. C. HO. "ELECTROCHEMICAL STORAGE OF HYDROGEN IN CARBON NANOSTRUCTURES". International Journal of Nanoscience 02, nr 04n05 (sierpień 2003): 307–17. http://dx.doi.org/10.1142/s0219581x03001334.
Pełny tekst źródłaMandal, Santi M., Tridib K. Sinha, Ajit K. Katiyar, Subhayan Das, Mahitosh Mandal i Sudipto Ghosh. "Existence of Carbon Nanodots in Human Blood". Journal of Nanoscience and Nanotechnology 19, nr 11 (1.11.2019): 6961–64. http://dx.doi.org/10.1166/jnn.2019.16628.
Pełny tekst źródłaFANG, HUI-CHEN, YUN-SHUO HSIEH, YOU-MING TSAU, HSIU-FUNG CHENG i I.-NAN LIN. "SYNTHESIS OF NANOSTRUCTURE CARBONACEOUS MATERIALS ON TIP USING PLASMA-CHEMICAL-VAPOR-DEPOSITION METHOD". International Journal of Nanoscience 02, nr 04n05 (sierpień 2003): 231–37. http://dx.doi.org/10.1142/s0219581x03001243.
Pełny tekst źródłaBarra, Ana, Cláudia Nunes, Eduardo Ruiz-Hitzky i Paula Ferreira. "Green Carbon Nanostructures for Functional Composite Materials". International Journal of Molecular Sciences 23, nr 3 (6.02.2022): 1848. http://dx.doi.org/10.3390/ijms23031848.
Pełny tekst źródłaKhanchuk, A. I., V. P. Molchanov, M. A. Medkov, P. S. Gordienko i V. A. Dostavalov. "Synthesis of carbonaceous nanostructures from natural graphite". Doklady Earth Sciences 452, nr 1 (wrzesień 2013): 942–44. http://dx.doi.org/10.1134/s1028334x13090110.
Pełny tekst źródłaKumar, Rajeev, Harish Kumar Choudhary, A. V. Anupama, Aishwarya V. Menon, Shital P. Pawar, Suryasarathi Bose i Balaram Sahoo. "Nitrogen doping as a fundamental way to enhance the EMI shielding behavior of cobalt particle-embedded carbonaceous nanostructures". New Journal of Chemistry 43, nr 14 (2019): 5568–80. http://dx.doi.org/10.1039/c9nj00639g.
Pełny tekst źródłaGhiurea, Marius, Stefan-Ovidiu Dima, Anca-Andreea Turcanu, Radu-Claudiu Fierascu, Cristian-Andi Nicolae, Bogdan Trica i Florin Oancea. "Carbonaceous Nanostructures Obtained by Hydrothermal Conversion of Biomass". Proceedings 29, nr 1 (15.10.2019): 56. http://dx.doi.org/10.3390/proceedings2019029056.
Pełny tekst źródłaKumar, Sanjay, Suneel Kumar, Manisha Sengar i Pratibha Kumari. "Gold-carbonaceous materials based heterostructures for gas sensing applications". RSC Advances 11, nr 23 (2021): 13674–99. http://dx.doi.org/10.1039/d1ra00361e.
Pełny tekst źródłaNecolau, Mădălina-Ioana, i Andreea-Mădălina Pandele. "Recent Advances in Graphene Oxide-Based Anticorrosive Coatings: An Overview". Coatings 10, nr 12 (25.11.2020): 1149. http://dx.doi.org/10.3390/coatings10121149.
Pełny tekst źródłaRozel, Petr, Darya Radziuk, Lubov Mikhnavets, Evgenij Khokhlov, Vladimir Shiripov, Iva Matolínová, Vladimír Matolín, Alexander Basaev, Nikolay Kargin i Vladimir Labunov. "Properties of Nitrogen/Silicon Doped Vertically Oriented Graphene Produced by ICP CVD Roll-to-Roll Technology". Coatings 9, nr 1 (19.01.2019): 60. http://dx.doi.org/10.3390/coatings9010060.
Pełny tekst źródłaLi, Weihan, Minsi Li, Keegan R. Adair, Xueliang Sun i Yan Yu. "Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries". Journal of Materials Chemistry A 5, nr 27 (2017): 13882–906. http://dx.doi.org/10.1039/c7ta02153d.
Pełny tekst źródłaJin, Hanfeng, Lili Ye, Jiuzhong Yang, Yu Jiang, Long Zhao i Aamir Farooq. "Inception of Carbonaceous Nanostructures via Hydrogen-Abstraction Phenylacetylene-Addition Mechanism". Journal of the American Chemical Society 143, nr 49 (16.11.2021): 20710–16. http://dx.doi.org/10.1021/jacs.1c08230.
Pełny tekst źródłaKubo, Shiori, Irene Tan, Robin J. White, Markus Antonietti i Maria-Magdalena Titirici. "Template Synthesis of Carbonaceous Tubular Nanostructures with Tunable Surface Properties". Chemistry of Materials 22, nr 24 (28.12.2010): 6590–97. http://dx.doi.org/10.1021/cm102556h.
Pełny tekst źródłaByeon, Jeong Hoon, i Jang-Woo Kim. "Production of carbonaceous nanostructures from a silver-carbon ambient spark". Applied Physics Letters 96, nr 15 (12.04.2010): 153102. http://dx.doi.org/10.1063/1.3396188.
Pełny tekst źródłaLiu, Lei, Chang-Ce Ke, Tian-Yi Ma i Yun-Pei Zhu. "When Carbon Meets CO2: Functional Carbon Nanostructures for CO2 Utilization". Journal of Nanoscience and Nanotechnology 19, nr 6 (1.06.2019): 3148–61. http://dx.doi.org/10.1166/jnn.2019.16590.
Pełny tekst źródłaUtke, Ivo, Johann Michler, Robert Winkler i Harald Plank. "Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review". Micromachines 11, nr 4 (10.04.2020): 397. http://dx.doi.org/10.3390/mi11040397.
Pełny tekst źródłaLiu, Xuyan, Jiahuan Zeng, Huinan Yang, Kai Zhou i Deng Pan. "V2O5-Based nanomaterials: synthesis and their applications". RSC Advances 8, nr 8 (2018): 4014–31. http://dx.doi.org/10.1039/c7ra12523b.
Pełny tekst źródłaFracari, Tiago, Sandra Einloft i Vladimir Lavayen. "Thermal Behavior and Spectroscopy Analysis of Carbonized Nanostructures Derived from Polypyrrole Nanotubes". International Journal of Nanoscience 16, nr 05n06 (11.08.2017): 1750014. http://dx.doi.org/10.1142/s0219581x17500144.
Pełny tekst źródłaKawaguchi, Masayuki. "Preparation, nanostructures and properties of carbonaceous materials containing boron and nitrogen". TANSO 2007, nr 227 (2007): 107–14. http://dx.doi.org/10.7209/tanso.2007.107.
Pełny tekst źródłaIl’ichev, É. A., V. N. Inkin, D. M. Migunov, G. N. Petrukhin, É. A. Poltoratskiĭ, G. S. Rychkov i D. V. Shkodin. "Catalytic growth of nanostructures from carbonaceous substrates: Properties and model notions". Technical Physics Letters 36, nr 2 (luty 2010): 170–72. http://dx.doi.org/10.1134/s1063785010020239.
Pełny tekst źródłaLong, Jeffrey W., Matthew Laskoski, Teddy M. Keller, Katherine A. Pettigrew, Trevor N. Zimmerman, Syed B. Qadri i Gregory W. Peterson. "Selective-combustion purification of bulk carbonaceous solids to produce graphitic nanostructures". Carbon 48, nr 2 (luty 2010): 501–8. http://dx.doi.org/10.1016/j.carbon.2009.09.068.
Pełny tekst źródłaKawaguchi, Masayuki. "Preparation, nanostructures and properties of carbonaceous materials containing boron and nitrogen". Carbon 45, nr 8 (lipiec 2007): 1718. http://dx.doi.org/10.1016/j.carbon.2007.04.006.
Pełny tekst źródłaAjayan, P. M., i F. Banhart. "Dynamic Interfaces In Carbon Nanostructures". Microscopy and Microanalysis 5, S2 (sierpień 1999): 140–41. http://dx.doi.org/10.1017/s1431927600014021.
Pełny tekst źródłaYu, Zhiqiang, Qing Shi, Huaping Wang, Junyi Shang, Qiang Huang i Toshio Fukuda. "Controllable Melting and Flow of Ag in Self-Formed Amorphous Carbonaceous Shell for Nanointerconnection". Micromachines 13, nr 2 (29.01.2022): 213. http://dx.doi.org/10.3390/mi13020213.
Pełny tekst źródłaMANOCHA, L. M., JIGNESH VALAND i S. MANOCHA. "FORMATION OF CARBON NANOSTRUCTURES DURING PYROLYSIS OF POLYMERS". International Journal of Nanoscience 05, nr 04n05 (sierpień 2006): 425–31. http://dx.doi.org/10.1142/s0219581x06004589.
Pełny tekst źródłaChen, Chunhong, Shanjun Mao, Chaoliang Tan, Zhe Wang, Yiyao Ge, Qinglang Ma, Xiao Zhang i in. "General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates". Angewandte Chemie International Edition 60, nr 28 (7.06.2021): 15556–62. http://dx.doi.org/10.1002/anie.202104028.
Pełny tekst źródłaChen, Chunhong, Shanjun Mao, Chaoliang Tan, Zhe Wang, Yiyao Ge, Qinglang Ma, Xiao Zhang i in. "General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates". Angewandte Chemie 133, nr 28 (7.06.2021): 15684–90. http://dx.doi.org/10.1002/ange.202104028.
Pełny tekst źródłaWen, Zhong Quan, Min Li, Shi Jin Zhu i Tian Wang. "Novel Mesoporous Carbon-Carbonaceous Materials Nanostructures Decorated with MnO2 Nanosheets for Supercapacitors". International Journal of Electrochemical Science 11, nr 3 (2016): 1810–20. http://dx.doi.org/10.1016/s1452-3981(23)16062-7.
Pełny tekst źródłaZhu, Yong Ming, Hui Li Hu i Werner Weppner. "Recent Progress on Carbon Coated Lithium Titanate". Advanced Materials Research 194-196 (luty 2011): 1426–30. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.1426.
Pełny tekst źródłaSzala, M. "Hexachloroethane as an efficient oxidizer in combustion synthesis of carbonaceous and ceramic nanostructures". International Journal of Self-Propagating High-Temperature Synthesis 19, nr 1 (marzec 2010): 28–33. http://dx.doi.org/10.3103/s106138621001005x.
Pełny tekst źródłaDuan, Huigao, Jianguo Zhao, Yongzhe Zhang, Erqing Xie i Li Han. "Preparing patterned carbonaceous nanostructures directly by overexposure of PMMA using electron-beam lithography". Nanotechnology 20, nr 13 (10.03.2009): 135306. http://dx.doi.org/10.1088/0957-4484/20/13/135306.
Pełny tekst źródłaZhao, Xin, Dong-Mei Guo, Qing-Da An, Shu-Feng Bo, Zuo-Yi Xiao, Wei-Jie Cai, Hai-Song Wang, Shang-Ru Zhai i Zhong-Cheng Li. "Hierarchical nitrogen/cobalt co-doped carbonaceous materials with electromagnetic waves absorption promoting nanostructures". Journal of Alloys and Compounds 822 (maj 2020): 153666. http://dx.doi.org/10.1016/j.jallcom.2020.153666.
Pełny tekst źródłaSun, Jinhua, Yuanhui Zuo, Hanyun Wang, Huancong Shi i Shijian Lu. "Global-Local CNTs Conductive Network Couple with Co-Based Polyhedral Promotes the Electrocatalytic Reduction of Oxygen". Catalysts 12, nr 12 (24.11.2022): 1508. http://dx.doi.org/10.3390/catal12121508.
Pełny tekst źródłaBrzyska, Agnieszka, Tomasz Panczyk i Krzysztof Wolinski. "From Cyclo[18]carbon to the Novel Nanostructures—Theoretical Predictions". International Journal of Molecular Sciences 23, nr 21 (26.10.2022): 12960. http://dx.doi.org/10.3390/ijms232112960.
Pełny tekst źródłaBaker, R. T. K., i N. M. Rodriguez. "Transmission Electron Microscopy studies of catalytically grown carbon nanostructures". Proceedings, annual meeting, Electron Microscopy Society of America 53 (13.08.1995): 408–9. http://dx.doi.org/10.1017/s0424820100138415.
Pełny tekst źródłaWarneke, Ziyan, Markus Rohdenburg, Jonas Warneke, Janina Kopyra i Petra Swiderek. "Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition". Beilstein Journal of Nanotechnology 9 (8.01.2018): 77–90. http://dx.doi.org/10.3762/bjnano.9.10.
Pełny tekst źródłaPoyraz, Selcuk, Marissa Flogel, Zhen Liu i Xinyu Zhang. "Microwave energy assisted carbonization of nanostructured conducting polymers for their potential use in energy storage applications". Pure and Applied Chemistry 89, nr 1 (1.01.2017): 173–82. http://dx.doi.org/10.1515/pac-2016-1109.
Pełny tekst źródłaSzabó, Anna, Gábor Kovács, Anita Kovács i Klara Hernadi. "Different Pathways for Synthesis of WO3 and Vertically Aligned Carbon Nanotube-Based Nanostructures". Journal of Nanoscience and Nanotechnology 21, nr 4 (1.04.2021): 2388–93. http://dx.doi.org/10.1166/jnn.2021.18964.
Pełny tekst źródłaTavangar, Amirhossein, Bo Tan i Krishnan Venkatakrishnan. "Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass". Nanoscale Research Letters 8, nr 1 (2013): 348. http://dx.doi.org/10.1186/1556-276x-8-348.
Pełny tekst źródłaBi, Jingran, Yao Li, Haitao Wang, Yukun Song, Shuang Cong, Chenxu Yu, Bei-Wei Zhu i Mingqian Tan. "Presence and Formation Mechanism of Foodborne Carbonaceous Nanostructures from Roasted Pike Eel (Muraenesox cinereus)". Journal of Agricultural and Food Chemistry 66, nr 11 (14.06.2017): 2862–69. http://dx.doi.org/10.1021/acs.jafc.7b02303.
Pełny tekst źródłaSong, Xiazi, Hua Feng, Jianing Xie i Jing Zhao. "A theoretical study on the application of different carbonaceous nanostructures in K-ion batteries". Monatshefte für Chemie - Chemical Monthly 151, nr 9 (20.08.2020): 1329–36. http://dx.doi.org/10.1007/s00706-020-02659-6.
Pełny tekst źródłaChen, Chuyang, Bryan Harry Rahmat Suryanto, Chuan Zhao, Xuchuan Jiang i Aibing Yu. "Nanostructures: Direct Hydrothermal Synthesis of Carbonaceous Silver Nanocables for Electrocatalytic Applications (Small 29/2015)". Small 11, nr 29 (sierpień 2015): 3556. http://dx.doi.org/10.1002/smll.201570174.
Pełny tekst źródłaChen, Dongzhen, Tongshan Chen, Yang Li, Shengxu Li, Liang Zhang, Yanwei Ren, Yaowu Wang i in. "A Flexible Sensor Based on 3D Gold@Carbonaceous Nanohybrid with Defect Sites of Conductivity for the Wearable Sensing at Low Stress". Nano 16, nr 04 (25.03.2021): 2150044. http://dx.doi.org/10.1142/s1793292021500442.
Pełny tekst źródłaKokorina, Alina A., Alexey V. Ermakov, Anna M. Abramova, Irina Yu Goryacheva i Gleb B. Sukhorukov. "Carbon Nanoparticles and Materials on Their Basis". Colloids and Interfaces 4, nr 4 (25.09.2020): 42. http://dx.doi.org/10.3390/colloids4040042.
Pełny tekst źródłaKaraxi, Evangelia K., Irene A. Kanellopoulou, Anna Karatza, Ioannis A. Kartsonakis i Costas A. Charitidis. "Fabrication of carbon nanotube-reinforced mortar specimens: evaluation of mechanical and pressure-sensitive properties". MATEC Web of Conferences 188 (2018): 01019. http://dx.doi.org/10.1051/matecconf/201818801019.
Pełny tekst źródłaBarin, Gabriela Borin, Thalita Santos Bispo, Iara de Fátima Giminenez i Ledjane Silva Barreto. "Carbon Nanostructures Synthesize from Coconut Coir Dust Mediated by Layered Clays through Hydrothermal Process". Materials Science Forum 727-728 (sierpień 2012): 1355–59. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.1355.
Pełny tekst źródłaJaiswar, R., C. Bailly, S. Hermans, J. P. Raskin i I. Huynen. "Wideband microwave absorption in thin nanocomposite films induced by a concentration gradient of mixed carbonaceous nanostructures". Journal of Materials Science: Materials in Electronics 30, nr 21 (8.10.2019): 19147–53. http://dx.doi.org/10.1007/s10854-019-02271-3.
Pełny tekst źródłaLuo, Wen, Jingke Ren, Wencong Feng, Xingbao Chen, Yinuo Yan i Noura Zahir. "Engineering Nanostructured Antimony-Based Anode Materials for Sodium Ion Batteries". Coatings 11, nr 10 (11.10.2021): 1233. http://dx.doi.org/10.3390/coatings11101233.
Pełny tekst źródłaTiwari, Neeru, Neha Agarwal, Debmalya Roy, Kingsuk Mukhopadhyay i Namburi Eswara Prasad. "Tailor Made Conductivities of Polymer Matrix for Thermal Management: Design and Development of Three-Dimensional Carbonaceous Nanostructures". Industrial & Engineering Chemistry Research 56, nr 3 (9.01.2017): 672–79. http://dx.doi.org/10.1021/acs.iecr.6b03245.
Pełny tekst źródła