Artykuły w czasopismach na temat „Carbonaceous nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carbonaceous nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Duley, W. W. "Carbon Nanoparticles and Carbonaceous Solids". Proceedings of the International Astronomical Union 10, H16 (sierpień 2012): 711–12. http://dx.doi.org/10.1017/s1743921314013027.
Pełny tekst źródłaMennella, Vito. "Synthesis and Transformation of Carbonaceous Nanoparticles". Proceedings of the International Astronomical Union 10, H16 (sierpień 2012): 715–16. http://dx.doi.org/10.1017/s1743921314013040.
Pełny tekst źródłaDas, Tanmoy, Praveen Kumar i Jinu Paul. "Resistance Spot Welded Al 1100 Alloy with Carbonaceous Interlayers". Materials Science Forum 978 (luty 2020): 3–11. http://dx.doi.org/10.4028/www.scientific.net/msf.978.3.
Pełny tekst źródłaHaq, Izhar ul, AA Khurram, Rizwan Hussain i Shahzad Naseem. "Designing and manufacturing of a lightweight and broadband electromagnetic wave absorber with combined carbonaceous and magnetic nanofillers". Polymers and Polymer Composites 27, nr 4 (9.01.2019): 215–21. http://dx.doi.org/10.1177/0967391118822794.
Pełny tekst źródłaChoudhary, Harish Kumar, Rajeev Kumar, Shital Patangrao Pawar, Uttandaraman Sundararaj i Balaram Sahoo. "Superiority of graphite coated metallic-nanoparticles over graphite coated insulating-nanoparticles for enhancing EMI shielding". New Journal of Chemistry 45, nr 10 (2021): 4592–600. http://dx.doi.org/10.1039/d0nj06231f.
Pełny tekst źródłaHou, Dingyu, Diyuan Zong, Casper S. Lindberg, Markus Kraft i Xiaoqing You. "On the coagulation efficiency of carbonaceous nanoparticles". Journal of Aerosol Science 140 (luty 2020): 105478. http://dx.doi.org/10.1016/j.jaerosci.2019.105478.
Pełny tekst źródłaCohen, Sarah, Evgeni Zelikman i Ran Yosef Suckeveriene. "Ultrasonically Induced Polymerization and Polymer Grafting in the Presence of Carbonaceous Nanoparticles". Processes 8, nr 12 (19.12.2020): 1680. http://dx.doi.org/10.3390/pr8121680.
Pełny tekst źródłaNowak, Andrzej P., A. Lisowska-Oleksiak, K. Siuzdak, M. Sawczak, M. Gazda, J. Karczewski i G. Trykowski. "Tin oxide nanoparticles from laser ablation encapsulated in a carbonaceous matrix – a negative electrode in lithium-ion battery applications". RSC Advances 5, nr 102 (2015): 84321–27. http://dx.doi.org/10.1039/c5ra10854c.
Pełny tekst źródłaWu, Yun, Mei Wang, Shaojuan Luo, Yunfeng Gu, Dongyang Nie, Zhiyang Xu, Yue Wu, Mindong Chen i Xinlei Ge. "Comparative Toxic Effects of Manufactured Nanoparticles and Atmospheric Particulate Matter in Human Lung Epithelial Cells". International Journal of Environmental Research and Public Health 18, nr 1 (22.12.2020): 22. http://dx.doi.org/10.3390/ijerph18010022.
Pełny tekst źródłaShi, Hengchong, Dean Shi, Ligang Yin, Zhihua Yang, Shifang Luan, Jiefeng Gao, Junwei Zha, Jinghua Yin i Robert K. Y. Li. "Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties". Nanoscale 6, nr 22 (2014): 13748–53. http://dx.doi.org/10.1039/c4nr04360j.
Pełny tekst źródłaMartín-Cortés, Guillermo Ruperto, Fabio José Esper, Wildor Theodoro Hennies, Giorgio Tomi i Francisco Rolando Valenzuela-Díaz. "Nanoparticles of Carbonaceous Minerals in Vulcanized Rubber Products". Materials Science Forum 727-728 (sierpień 2012): 1746–50. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.1746.
Pełny tekst źródłaMinutolo, P., G. Gambi, A. D’Alessio i S. Carlucci. "Spectroscopic characterisation of carbonaceous nanoparticles in premixed flames". Atmospheric Environment 33, nr 17 (sierpień 1999): 2725–32. http://dx.doi.org/10.1016/s1352-2310(98)00330-6.
Pełny tekst źródłaKovacevic, Eva, Johannes Berndt, Thomas Strunskus i Laifa Boufendi. "Size dependent characteristics of plasma synthesized carbonaceous nanoparticles". Journal of Applied Physics 112, nr 1 (lipiec 2012): 013303. http://dx.doi.org/10.1063/1.4731751.
Pełny tekst źródłaWorden, M., L. Bergquist i T. Hegmann. "A quick and easy synthesis of fluorescent iron oxide nanoparticles featuring a luminescent carbonaceous coating via in situ pyrolysis of organosilane ligands". RSC Adv. 5, nr 121 (2015): 100384–89. http://dx.doi.org/10.1039/c5ra18382k.
Pełny tekst źródłaLi, Jiaming, Xiaoyun Li, Guocheng Han, Chuanfu Liu i Xiaoying Wang. "Salt-template hydrothermal carbonization for Pd NP-loaded porous carbonaceous material". BioResources 14, nr 2 (19.03.2019): 3630–50. http://dx.doi.org/10.15376/biores.14.2.3630-3650.
Pełny tekst źródłaDong, Xiaozhong, Chunxiang Lu, Liyong Wang, Pucha Zhou, Denghua Li, Lu Wang, Gangping Wu i Yonghong Li. "Polyacrylonitrile-based turbostratic graphite-like carbon wrapped silicon nanoparticles: a new-type anode material for lithium ion battery". RSC Advances 6, nr 16 (2016): 12737–43. http://dx.doi.org/10.1039/c5ra25380b.
Pełny tekst źródłaCarreño, N. L. V., M. T. Escote, A. Valentini, L. McCafferty, V. Stolojan, M. Beliatis, C. A. Mills, R. Rhodes, C. T. G. Smith i S. R. P. Silva. "Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles". Nanoscale 7, nr 41 (2015): 17441–49. http://dx.doi.org/10.1039/c5nr04499e.
Pełny tekst źródłaKumar, Rajeev, Harish Kumar Choudhary, A. V. Anupama, Aishwarya V. Menon, Shital P. Pawar, Suryasarathi Bose i Balaram Sahoo. "Nitrogen doping as a fundamental way to enhance the EMI shielding behavior of cobalt particle-embedded carbonaceous nanostructures". New Journal of Chemistry 43, nr 14 (2019): 5568–80. http://dx.doi.org/10.1039/c9nj00639g.
Pełny tekst źródłaCai, Ou Chen. "Influences of TiO2 Nanoparticles on the Transport of Hydrophobic Organic Contaminant in Soil". Advanced Materials Research 1010-1012 (sierpień 2014): 55–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.55.
Pełny tekst źródłaNandan, Ravi, i K. K. Nanda. "A unique approach to designing resilient bi-functional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres". Journal of Materials Chemistry A 5, nr 21 (2017): 10544–53. http://dx.doi.org/10.1039/c7ta02293j.
Pełny tekst źródłaZhang, Yimin, Haoxi Jiang, Guiming Li i Minhua Zhang. "Controlled synthesis of highly dispersed and nano-sized Ru catalysts supported on carbonaceous materials via supercritical fluid deposition". RSC Advances 6, nr 20 (2016): 16851–58. http://dx.doi.org/10.1039/c5ra27956a.
Pełny tekst źródłaKumar, Rajeev, Ajay Kumar, Nancy Verma, Reji Philip i Balaram Sahoo. "Mechanistic insights into the optical limiting performance of carbonaceous nanomaterials embedded with core–shell type graphite encapsulated Co nanoparticles". Physical Chemistry Chemical Physics 22, nr 46 (2020): 27224–40. http://dx.doi.org/10.1039/d0cp03328f.
Pełny tekst źródłaJones, A. P. "Dust evolution, a global view I. Nanoparticles, nascence, nitrogen and natural selection … joining the dots". Royal Society Open Science 3, nr 12 (grudzień 2016): 160221. http://dx.doi.org/10.1098/rsos.160221.
Pełny tekst źródłaGuo, Lin, Sheng-Shuai Gao, Qing-Da An, Zuo-Yi Xiao, Shang-Ru Zhai, Dong-Jiang Yang i Li Cui. "Dopamine-derived cavities/Fe3O4 nanoparticles-encapsulated carbonaceous composites with self-generated three-dimensional network structure as an excellent microwave absorber". RSC Advances 9, nr 2 (2019): 766–80. http://dx.doi.org/10.1039/c8ra08851a.
Pełny tekst źródłaJander, Helga, Christine Borchers, Heidi Böhm, Alexander Emelianov i Christoph Schulz. "Structures of carbonaceous nanoparticles formed in various pyrolysis systems". Carbon 150 (wrzesień 2019): 244–58. http://dx.doi.org/10.1016/j.carbon.2019.02.034.
Pełny tekst źródłaZeinert, A., C. Arnas, C. Dominique i A. Mouberi. "Optical properties of carbonaceous nanoparticles produced in sputtering discharges". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 26, nr 6 (listopad 2008): 1450–54. http://dx.doi.org/10.1116/1.2987950.
Pełny tekst źródłaTurkevich, Leonid A., Joseph Fernback, Ashok G. Dastidar i Paul Osterberg. "Potential explosion hazard of carbonaceous nanoparticles: screening of allotropes". Combustion and Flame 167 (maj 2016): 218–27. http://dx.doi.org/10.1016/j.combustflame.2016.02.010.
Pełny tekst źródłaKumar, Sanjay, Suneel Kumar, Manisha Sengar i Pratibha Kumari. "Gold-carbonaceous materials based heterostructures for gas sensing applications". RSC Advances 11, nr 23 (2021): 13674–99. http://dx.doi.org/10.1039/d1ra00361e.
Pełny tekst źródłaTong, Zhaoming, Liang Huang, Junyan Guo, Haijun Zhang, Quanli Jia, Gaoran Li, Wen Lei, Huaiyu Shao i Shaowei Zhang. "A spatially efficient “tube-in-tube” hybrid for durable sulfur electrochemistry". Journal of Materials Chemistry A 10, nr 10 (2022): 5460–69. http://dx.doi.org/10.1039/d1ta10181a.
Pełny tekst źródłaXiaohui, Wu, Liu Zhiliang, Zheng Jie, Li Xingguo i Shi Zujin. "Arc-discharge synthesis of dual-carbonaceous-layer-coated tin nanoparticles with tunable structures and high reversible lithium storage capacity". Journal of Materials Chemistry A 5, nr 26 (2017): 13769–75. http://dx.doi.org/10.1039/c7ta03323k.
Pełny tekst źródłaStefanovic, I. "Dust plasma analogue for interstellar 217.5 nm extinction". Serbian Astronomical Journal, nr 177 (2008): 47–52. http://dx.doi.org/10.2298/saj0877047s.
Pełny tekst źródłaHanif, Sadaf, Bernd Oschmann, Dmitri Spetter, Muhammad Nawaz Tahir, Wolfgang Tremel i Rudolf Zentel. "Block copolymers from ionic liquids for the preparation of thin carbonaceous shells". Beilstein Journal of Organic Chemistry 13 (16.08.2017): 1693–701. http://dx.doi.org/10.3762/bjoc.13.163.
Pełny tekst źródłaRayhan, Tara Hafiz, Chi Nam Yap, Arma Yulisa, Rubiyatno, Irina Popescu, Jose Arturo Alvarez i Risky Ayu Kristanti. "Engineered Nanoparticles for Wastewater Treatment System". Civil and Sustainable Urban Engineering 2, nr 2 (10.10.2022): 56–66. http://dx.doi.org/10.53623/csue.v2i2.113.
Pełny tekst źródłaReinholds, I., I. Pugajeva, E. Bogdanova, J. Jaunbergs i V. Bartkevics. "Recent applications of carbonaceous nanosorbents for the analysis of mycotoxins in food by liquid chromatography: a short review". World Mycotoxin Journal 12, nr 1 (11.02.2019): 31–43. http://dx.doi.org/10.3920/wmj2018.2339.
Pełny tekst źródłaBabu, J. Suresh, H. Bhavani Naga Prasanna, J. Satish Babu, Yamarthi Narasimha Rao i Surafel Mustefa Beyan. "Environmental Applications of Sorbents, High-Flux Membranes of Carbon-Based Nanomaterials". Adsorption Science & Technology 2022 (2.02.2022): 1–13. http://dx.doi.org/10.1155/2022/8218476.
Pełny tekst źródłaSeredych, Mykola, Svetlana Bashkova, Robert Pietrzak i Teresa J. Bandosz. "Interactions of NO2and NO with Carbonaceous Adsorbents Containing Silver Nanoparticles". Langmuir 26, nr 12 (15.06.2010): 9457–64. http://dx.doi.org/10.1021/la101175h.
Pełny tekst źródłaKablov, E. N., S. V. Kondrashov i G. Yu Yurkov. "Prospects of using carbonaceous nanoparticles in binders for polymer composites". Nanotechnologies in Russia 8, nr 3-4 (marzec 2013): 163–85. http://dx.doi.org/10.1134/s1995078013020080.
Pełny tekst źródłaDutta, Jyoti, Sourav Saikia, Sayeed Ashique Ahmed i Puspendu K. Das. "Influence of size and composition on fluorescence from carbonaceous nanoparticles". Journal of Photochemistry and Photobiology A: Chemistry 437 (marzec 2023): 114485. http://dx.doi.org/10.1016/j.jphotochem.2022.114485.
Pełny tekst źródłaLiang, Hai-Wei, Lei Wang, Pei-Yang Chen, Hong-Tao Lin, Li-Feng Chen, Dian He i Shu-Hong Yu. "Carbonaceous Nanofiber Membranes for Selective Filtration and Separation of Nanoparticles". Advanced Materials 22, nr 42 (21.09.2010): 4691–95. http://dx.doi.org/10.1002/adma.201001863.
Pełny tekst źródłaKeller, Teddy M., Matthew Laskoski, Michael Osofsky i Syed B. Qadri. "Carbon nanotube formation catalyzed by Ni nanoparticles in carbonaceous solid". physica status solidi (a) 205, nr 7 (lipiec 2008): 1585–91. http://dx.doi.org/10.1002/pssa.200723370.
Pełny tekst źródłaNata, Iryanti Fatyasari, Giyanto Wijaya Salim i Cheng-Kang Lee. "Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal". Journal of Hazardous Materials 183, nr 1-3 (listopad 2010): 853–58. http://dx.doi.org/10.1016/j.jhazmat.2010.07.105.
Pełny tekst źródłaTressaud, A., i H. Groult. "Fluorinated carbonaceous nanoparticles as active material in primary lithium battery". Journal of Fluorine Chemistry 219 (marzec 2019): 1–9. http://dx.doi.org/10.1016/j.jfluchem.2018.12.007.
Pełny tekst źródłaYadav, Apurv, Bidyut Barman, Abhishek Kardam, S. Shankara Narayanan, Abhishek Verma i VK Jain. "Thermal properties of nano-graphite-embedded magnesium chloride hexahydrate phase change composites". Energy & Environment 28, nr 7 (23.07.2017): 651–60. http://dx.doi.org/10.1177/0958305x17721475.
Pełny tekst źródłaQuan, Dang Long, i Phuoc Huu Le. "Enhanced Methanol Oxidation Activity of PtRu/C100−xMWCNTsx (x = 0–100 wt.%) by Controlling the Composition of C-MWCNTs Support". Coatings 11, nr 5 (14.05.2021): 571. http://dx.doi.org/10.3390/coatings11050571.
Pełny tekst źródłaLeonidovna, Voropaeva Nadezda, Viktor Mikhailovich Mukhin, Revina Alexandra Anatolyevna, Busev Sergey Alekseevich i Karpachev Vladimir Vladimirovich. "Reclamation Of Plant Wastes (Straw) And Obtaining (Nano) Chips With Bactericidal Properties Based On Them". GeoScience Engineering 61, nr 3 (1.09.2015): 1–7. http://dx.doi.org/10.1515/gse-2015-0017.
Pełny tekst źródłaFerraccioli, Raffaella, Diana Borovika, Annette-Enrica Surkus, Carsten Kreyenschulte, Christoph Topf i Matthias Beller. "Synthesis of cobalt nanoparticles by pyrolysis of vitamin B12: a non-noble-metal catalyst for efficient hydrogenation of nitriles". Catalysis Science & Technology 8, nr 2 (2018): 499–507. http://dx.doi.org/10.1039/c7cy01577a.
Pełny tekst źródłaGao, Hongtao, Shuang Lv, Jinbiao Dou, Miaomiao Kong, Dongmei Dai, Chongdian Si i Guangjun Liu. "The efficient adsorption removal of Cr(vi) by using Fe3O4 nanoparticles hybridized with carbonaceous materials". RSC Advances 5, nr 74 (2015): 60033–40. http://dx.doi.org/10.1039/c5ra10236g.
Pełny tekst źródłaHu, Yin, Wei Chen, Qi Wu, Xin Xie i Weiguo Song. "Carbon Nanotubes-Supported Well-Dispersed Pd Nanoparticles for the Efficiently Selective Hydrogenation of Benzoic Acid to Synthesize Cyclohexane Carboxylic Acid". Nano 14, nr 01 (styczeń 2019): 1950008. http://dx.doi.org/10.1142/s1793292019500085.
Pełny tekst źródłaForbot, Natalia, Paulina Bolibok, Marek Wiśniewski i Katarzyna Roszek. "Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress". Mini-Reviews in Medicinal Chemistry 20, nr 4 (10.04.2020): 294–307. http://dx.doi.org/10.2174/1389557519666191029162150.
Pełny tekst źródłaSimha Martynková, G., A. Slíva, M. Hundáková, K. Barabaszová, M. Valášková, O. Guney, A. Bachmatiuk i M. H. Rümmeli. "Carbonaceous Nanoparticles Prepared with Help of Silicate Substrate and Metal Catalysts". Advanced Science, Engineering and Medicine 3, nr 1 (1.04.2011): 38–43. http://dx.doi.org/10.1166/asem.2011.1091.
Pełny tekst źródła