Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Carbon-heteroatom Bond Forming Reactions.

Artykuły w czasopismach na temat „Carbon-heteroatom Bond Forming Reactions”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carbon-heteroatom Bond Forming Reactions”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Corma, A., A. Leyva-Pérez i Maria J. Sabater. "Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions". Chemical Reviews 111, nr 3 (9.03.2011): 1657–712. http://dx.doi.org/10.1021/cr100414u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lumb, Jean-Philip, i Kenneth Esguerra. "Cu(III)-Mediated Aerobic Oxidations". Synthesis 51, nr 02 (3.12.2018): 334–58. http://dx.doi.org/10.1055/s-0037-1609635.

Pełny tekst źródła
Streszczenie:
CuIII species have been invoked in many copper-catalyzed transformations including cross-coupling reactions and oxidation reactions. In this review, we will discuss seminal discoveries that have advanced our understanding of the CuI/CuIII redox cycle in the context of C–C and C–heteroatom aerobic cross-coupling reactions, as well as C–H oxidation reactions mediated by CuIII–dioxygen adducts.1 General Introduction2 Early Examples of CuIII Complexes3 Aerobic CuIII-Mediated Carbon–Heteroatom Bond-Forming Reactions4 Aerobic CuIII-Mediated Carbon–Carbon Bond-Forming Reactions5 Bioinorganic Studies of CuIII Complexes from CuI and O2 5.1 O2 Activation5.2 Biomimetic CuIII Complexes from CuI and Dioxygen5.2.1 Type-3 Copper Enzymes and Dinuclear Cu Model Complexes5.2.2 Particulate Methane Monooxygenase and Di- and Trinuclear Cu Model Complexes5.2.3 Dopamine–β-Monooxygenase and Mononuclear Cu Model Complexes6 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
3

Takemoto, Yoshiji, i Hideto Miyabe. "ChemInform Abstract: Asymmetric Carbon-Heteroatom Bond-Forming Reactions". ChemInform 42, nr 18 (7.04.2011): no. http://dx.doi.org/10.1002/chin.201118241.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Daoust, Benoit, Nicolas Gilbert, Paméla Casault, François Ladouceur i Simon Ricard. "1,2-Dihaloalkenes in Metal-Catalyzed Reactions". Synthesis 50, nr 16 (9.07.2018): 3087–113. http://dx.doi.org/10.1055/s-0037-1610174.

Pełny tekst źródła
Streszczenie:
1,2-Dihaloalkenes readily undergo simultaneous or sequential difunctionalization through transition-metal-catalyzed reactions, which makes them attractive building blocks for complex unsaturated motifs. This review summarizes recent applications of such transformations in C–C and C–heteroatom bond forming processes. The facile synthesis of stereodefined alkene derivatives, as well as aromatic and heteroatomic­ compounds, from 1,2-dihaloalkenes is thus outlined.1 Introduction2 Synthesis of 1,2-Dihaloalkenes3 C–C Bond Forming Reactions4 C–Heteroatom Bond Forming Reactions5 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
5

Miyabe, Hideto, i Yoshiji Takemoto. "Cascade radical reactions via carbon-carbon/heteroatom bond-forming process". Universal Organic Chemistry 2, nr 1 (2014): 1. http://dx.doi.org/10.7243/2053-7670-2-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hosoya, Keisuke, Minami Odagi i Kazuo Nagasawa. "Guanidine organocatalysis for enantioselective carbon-heteroatom bond-forming reactions". Tetrahedron Letters 59, nr 8 (luty 2018): 687–96. http://dx.doi.org/10.1016/j.tetlet.2017.12.058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Corma, A., A. Leyva-Perez i Maria J. Sabater. "ChemInform Abstract: Gold-Catalyzed Carbon-Heteroatom Bond-Forming Reactions". ChemInform 42, nr 29 (27.06.2011): no. http://dx.doi.org/10.1002/chin.201129225.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Banerjee, Bubun. "Microwave-assisted Carbon-carbon and Carbon-heteroatom Bond Forming Reactions - Part 1A". Current Microwave Chemistry 7, nr 1 (23.06.2020): 3–4. http://dx.doi.org/10.2174/221333560701200422091717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Banerjee, Bubun. "Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 1B". Current Microwave Chemistry 7, nr 2 (6.08.2020): 84–85. http://dx.doi.org/10.2174/221333560702200714141435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Banerjee, Bubun. "Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 2A". Current Microwave Chemistry 8, nr 2 (6.12.2021): 56–57. http://dx.doi.org/10.2174/221333560802211028163413.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Banerjee, Bubun. "Microwave-Assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions: Part 2B". Current Microwave Chemistry 8, nr 3 (grudzień 2021): 138–39. http://dx.doi.org/10.2174/221333560803211230153553.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Leyva-Pérez, A. "Sub-nanometre metal clusters for catalytic carbon–carbon and carbon–heteroatom cross-coupling reactions". Dalton Transactions 46, nr 46 (2017): 15987–90. http://dx.doi.org/10.1039/c7dt03203j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Deng, Yu-Hua, Zhihui Shao i Hui Wang. "An Update of N-Tosylhydrazones: Versatile Reagents for Metal-Catalyzed and Metal-Free Coupling Reactions". Synthesis 50, nr 12 (23.05.2018): 2281–306. http://dx.doi.org/10.1055/s-0036-1591993.

Pełny tekst źródła
Streszczenie:
N-Tosylhydrazones have had widespread application in organic synthesis for more than a half century. In most of cases, N-tosylhydrazones, as masked diazo compounds, have been generally used in a series of important carbon–carbon and carbon–heteroatom bond-forming reactions. This review provides an update on progress in diverse coupling reactions of N-tosylhydrazones since 2012. The examples selected are mainly categorized by metal-catalyzed and metal-free systems, wherein four main types of transformations including insertion, olefination, alkynylation, and cyclization are discussed for each system.1 Introduction2 Transition-Metal-Catalyzed Coupling Reactions3 Metal-Free Coupling Reactions4 Conclusion and Outlook
Style APA, Harvard, Vancouver, ISO itp.
14

Banerjee, Bubun. "Carbon-carbon and Carbon-heteroatom Bond Forming Reactions Under Greener Conditions - Part 2". Current Organic Chemistry 25, nr 1 (1.02.2021): 2–3. http://dx.doi.org/10.2174/138527282501210101161748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Banerjee, Bubun. "Carbon-Carbon and Carbon-Heteroatom Bond-forming Reactions under Greener Conditions-Part 1A". Current Organic Chemistry 23, nr 28 (17.01.2020): 3135–36. http://dx.doi.org/10.2174/138527282328200117095904.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Banerjee, Bubun. "Carbon-Carbon and Carbon-Heteroatom Bond-forming Reactions under Greener Conditions-Part 1B". Current Organic Chemistry 24, nr 1 (15.04.2020): 2–3. http://dx.doi.org/10.2174/138527282401200305142223.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Banerjee, Bubun. "Carbon-carbon and Carbon-heteroatom Bond Forming Reactions Under Greener Conditions - Part 2". Current Organic Chemistry 25, nr 1 (1.01.2021): 2–3. http://dx.doi.org/10.2174/138527282501210101161748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ajvazi, Njomza, i Stojan Stavber. "Alcohols in direct carbon-carbon and carbon-heteroatom bond-forming reactions: recent advances". Arkivoc 2018, nr 2 (5.02.2018): 288–329. http://dx.doi.org/10.24820/ark.5550190.p010.237.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Brahmachari, Goutam, i Bubun Banerjee. "Sulfamic Acid-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions: An Overview". Current Organocatalysis 3, nr 2 (4.03.2016): 93–124. http://dx.doi.org/10.2174/2213337202666150812230830.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kamanna, Kantharaju, i Santosh Y. Khatavi. "Microwave-accelerated Carbon-carbon and Carbon-heteroatom Bond Formation via Multi-component Reactions: A Brief Overview". Current Microwave Chemistry 7, nr 1 (23.06.2020): 23–39. http://dx.doi.org/10.2174/2213346107666200218124147.

Pełny tekst źródła
Streszczenie:
Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in which organic reactants react with domino in a single-step process. This has become an alternative platform for the organic chemists, because of their simple operation, less purification methods, no side product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon- carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon- carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation, Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O, and C-S bond are also found more important and present in various heterocyclic compounds, which are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis for sustainable production of diverse and structurally complex organic molecules. Reactions that required hours to run completely in a conventional method can now be carried out within minutes. Thus, the application of microwave (MW) radiation in organic synthesis has become more promising considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted organic synthesis (MAOS) has successfully been employed in various material syntheses, such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis, polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples are discussed in this review.
Style APA, Harvard, Vancouver, ISO itp.
21

Banerjee, Bubun. "Sc(OTf)3 catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: a review". Arkivoc 2017, nr 1 (4.12.2016): 1–25. http://dx.doi.org/10.24820/ark.5550190.p009.868.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Chen, Yi-Hung, Mario Ellwart, Vladimir Malakhov i Paul Knochel. "Solid Organozinc Pivalates: A New Class of Zinc Organometallics with Greatly Enhanced Air- and Moisture-Stability". Synthesis 49, nr 15 (29.05.2017): 3215–23. http://dx.doi.org/10.1055/s-0036-1588843.

Pełny tekst źródła
Streszczenie:
Organozinc species are powerful reagents for performing carbon–carbon and carbon–heteroatom bond-forming reactions in the presence of a transition-metal catalyst. However, extended applications of zinc reagents have been hampered by their moderate air- and moisture­-stability. This short review presents our recent developments on the preparation of solid aryl, benzyl, heteroaryl, allyl zinc pivalates and zinc amide enolate reagents with greatly enhanced stability toward to air and moisture.1 Introduction2 Preparation of Organozinc Pivalates2.1 Using Organic Halides as Substrates2.2 Using a Directed Metalation on Functionalized Arenes and Heteroarenes2.3 Preparation of Solid Allylic Zinc Pivalates3 General Reactivity Patterns of Organozinc Pivalates3.1 General Aspects3.2 Transition-Metal-Catalyzed Cross-Couplings3.3 Other Carbon–Carbon Bond-Forming Reactions Using Organozinc Pivalates3.4 Preparation and Reactions of Solid, Salt-Stabilized Zinc Amide Enolates as New, Convenient Reformatsky Reagents4 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
23

Nair, Vijay, Sreeletha B. Panicker, Latha G. Nair, Tesmol G. George i Anu Augustine. "Carbon-Heteroatom Bond-Forming Reactions Mediated by Cerium(IV) Ammonium Nitrate:An Overview". Synlett, nr 2 (2003): 0156–65. http://dx.doi.org/10.1055/s-2003-36775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Teichert, Johannes F., i Lea T. Brechmann. "Catch It If You Can: Copper-Catalyzed (Transfer) Hydrogenation Reactions and Coupling Reactions by Intercepting Reactive Intermediates Thereof". Synthesis 52, nr 17 (13.07.2020): 2483–96. http://dx.doi.org/10.1055/s-0040-1707185.

Pełny tekst źródła
Streszczenie:
The key reactive intermediate of copper(I)-catalyzed alkyne semihydrogenations is a vinylcopper(I) complex. This intermediate can be exploited as a starting point for a variety of trapping reactions. In this manner, an alkyne semihydrogenation can be turned into a dihydrogen­-mediated coupling reaction. Therefore, the development of copper-catalyzed (transfer) hydrogenation reactions is closely intertwined with the corresponding reductive trapping reactions. This short review highlights and conceptualizes the results in this area so far, with H2-mediated carbon–carbon and carbon–heteroatom bond-forming reactions emerging under both a transfer hydrogenation setting as well as with the direct use of H2. In all cases, highly selective catalysts are required that give rise to atom-economic multicomponent coupling reactions with rapidly rising molecular complexity. The coupling reactions are put into perspective by presenting the corresponding (transfer) hydrogenation processes first.1 Introduction: H2-Mediated C–C Bond-Forming Reactions2 Accessing Copper(I) Hydride Complexes as Key Reagents for Coupling Reactions; Requirements for Successful Trapping Reactions 3 Homogeneous Copper-Catalyzed Transfer Hydrogenations4 Trapping of Reactive Intermediates of Alkyne Transfer Semi­hydrogenation Reactions: First Steps Towards Hydrogenative Alkyne Functionalizations 5 Copper(I)-Catalyzed Alkyne Semihydrogenations6 Copper(I)-Catalyzed H2-Mediated Alkyne Functionalizations; Trapping of Reactive Intermediates from Catalytic Hydrogenations6.1 A Detour: Copper(I)-Catalyzed Allylic Reductions, Catalytic Generation of Hydride Nucleophiles from H2 6.2 Trapping with Allylic Electrophiles: A Copper(I)-Catalyzed Hydro­allylation Reaction of Alkynes 6.3 Trapping with Aryl Iodides7 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
25

Terao, Jun, Hirohisa Todo, Hiroyasu Watabe, Aki Ikumi, Yoshiaki Shinohara i Nobuaki Kambe. "Carbon-carbon bond-forming reactions using alkyl fluorides". Pure and Applied Chemistry 80, nr 5 (1.01.2008): 941–51. http://dx.doi.org/10.1351/pac200880050941.

Pełny tekst źródła
Streszczenie:
This account reviews C-C bond formation reactions using alkyl fluorides mostly focusing on the transition-metal-catalyzed reactions. These reactions proceed efficiently under mild conditions by the combined use of Grignard reagents and transition-metal catalysts, such as Ni, Cu, and Zr. It is proposed that ate complex intermediates formed by the reaction of these transition metals with Grignard reagents play important roles as the active catalytic species. Organoaluminun reagents react directly with alkyl fluorides in nonpolar solvents at room temperature to form C-C bonds. These studies demonstrate the practical usefulness of alkyl fluorides in C-C bond formation reactions and provide a promising method for the construction of carbon frameworks employing alkyl fluorides. The scope and limitations, as well as reaction pathways, are discussed.
Style APA, Harvard, Vancouver, ISO itp.
26

Ranu, Brindaban C., Tanmay Chatterjee i Nirmalya Mukherjee. "ChemInform Abstract: Carbon-Heteroatom Bond Forming Reactions and Heterocycle Synthesis under Ball Milling". ChemInform 46, nr 25 (czerwiec 2015): no. http://dx.doi.org/10.1002/chin.201525284.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Bhunia, Anup, Santhivardhana Reddy Yetra i Akkattu T. Biju. "Recent advances in transition-metal-free carbon–carbon and carbon–heteroatom bond-forming reactions using arynes". Chemical Society Reviews 41, nr 8 (2012): 3140. http://dx.doi.org/10.1039/c2cs15310f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Brahmachari, Goutam, Nayana Nayek, Mullicka Mandal, Anindita Bhowmick i Indrajit Karmakar. "Ultrasound-promoted Organic Synthesis - A Recent Update". Current Organic Chemistry 25, nr 13 (2.09.2021): 1539–65. http://dx.doi.org/10.2174/1385272825666210316122319.

Pełny tekst źródła
Streszczenie:
Abstract: Ultrasonication, nowadays, is well-regarded as an effective green tool in implementing a plethora of organic transformations. The last decade has seen quite useful applications of ultrasound irradiation in synthetic organic chemistry. Ultrasound has already come out as a unique technique in green chemistry practice for its inherent properties of minimizing wastes and reducing energy and time, thereby increasing the product yields with higher purities under milder reaction conditions. The present review summarizes ultrasound-promoted useful organic transformations involving both carbon-carbon and carbon-heteroatom (N, O, S) bond-forming reactions in the absence or presence of varying catalytic systems, reported during the period 2016-2020.
Style APA, Harvard, Vancouver, ISO itp.
29

Majumdar, K. C., B. Roy, P. Debnath i A. Taher. "Metal-mediated Heterocyclization: Synthesis of Heterocyclic Compounds Containing More Than One Heteroatom Through Carbon-Heteroatom Bond Forming Reactions". Current Organic Chemistry 14, nr 8 (1.05.2010): 846–87. http://dx.doi.org/10.2174/138527210791111876.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Yoda, Hidemi, Tetsuya Sengoku, Tomoya Hamamatsu, Toshiyasu Inuzuka i Masaki Takahashi. "New Synthetic Methodology toward Macrolides/Macrolactams via Palladium-Catalyzed Carbon-Heteroatom Bond-Forming Reactions". Synlett 2011, nr 12 (29.06.2011): 1766–68. http://dx.doi.org/10.1055/s-0030-1260812.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Zhu, Rong. "Emerging Catalyst Control in Cobalt-Catalyzed Oxidative Hydrofunctionalization Reactions". Synlett 30, nr 18 (25.07.2019): 2015–21. http://dx.doi.org/10.1055/s-0039-1690498.

Pełny tekst źródła
Streszczenie:
Oxidative functionalization has emerged as an important pathway in Co-catalyzed hydrogen atom transfer (HAT) hydrofunctionalization reactions. Notably, evidence was found for the participation of organometallic intermediates in such radical-polar crossover processes. These findings provide opportunities for catalyst control that was previously absent in HAT catalysis. In this article, we summarize the recent progress towards this direction involving carbon–heteroatom bond-forming intra- and intermolecular reactions, including work from our own group.1 Introduction2 Oxidative Trapping by Solvents and Intramolecular Nucleophiles3 Intermolecular Oxidative Hydrofunctionalization4 Conclusion and Outlook
Style APA, Harvard, Vancouver, ISO itp.
32

Oliver-Meseguer, Judit, Antonio Leyva-Pérez i Avelino Corma. "Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution". ChemCatChem 5, nr 12 (2.10.2013): 3509–15. http://dx.doi.org/10.1002/cctc.201300695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bhunia, Anup, Santhivardhana Reddy Yetra i Akkattu T. Biju. "ChemInform Abstract: Recent Advances in Transition-Metal-Free Carbon-Carbon and Carbon-Heteroatom Bond-Forming Reactions Using Arynes". ChemInform 43, nr 30 (3.07.2012): no. http://dx.doi.org/10.1002/chin.201230238.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Lorsbach, Beth A., i Mark J. Kurth. "Carbon−Carbon Bond Forming Solid-Phase Reactions". Chemical Reviews 99, nr 6 (czerwiec 1999): 1549–82. http://dx.doi.org/10.1021/cr970109y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Majumdar, K. C., B. Roy, P. Debnath i A. Taher. "ChemInform Abstract: Metal-Mediated Heterocyclization: Synthesis of Heterocyclic Compounds Containing More than One Heteroatom Through Carbon-Heteroatom Bond-Forming Reactions". ChemInform 41, nr 35 (5.08.2010): no. http://dx.doi.org/10.1002/chin.201035243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Correa, Arkaitz, i Marcos Segundo. "Cross-Dehydrogenative Coupling Reactions for the Functionalization of α-Amino Acid Derivatives and Peptides". Synthesis 50, nr 15 (25.06.2018): 2853–66. http://dx.doi.org/10.1055/s-0037-1610073.

Pełny tekst źródła
Streszczenie:
The functionalization of typically unreactive C(sp3)–H bonds holds great promise for reducing the reliance on existing functional groups while improving atom-economy and energy efficiency. As a result, this topic is a matter of genuine concern for scientists in order to achieve greener chemical processes. The site-specific modification of α-amino acid and peptides based upon C(sp3)–H functionalization still represents a great challenge of utmost synthetic importance. This short review summarizes the most recent advances in ‘Cross-Dehydrogenative Couplings’ of α-amino carbonyl compounds and peptide derivatives with a variety of nucleophilic coupling partners.1 Introduction2 C–C Bond-Forming Oxidative Couplings2.1 Reaction with Alkynes2.2 Reaction with Alkenes2.3 Reaction with (Hetero)arenes2.4 Reaction with Alkyl Reagents3 C–Heteroatom Bond-Forming Oxidative Couplings3.1 C–P Bond Formation3.2 C–N Bond Formation3.3 C–O and C–S Bond Formation4 Conclusions
Style APA, Harvard, Vancouver, ISO itp.
37

Chauhan, Pankaj, Suruchi Mahajan i Dieter Enders. "Organocatalytic Carbon–Sulfur Bond-Forming Reactions". Chemical Reviews 114, nr 18 (21.08.2014): 8807–64. http://dx.doi.org/10.1021/cr500235v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Bedford, Robin B. "Palladacyclic catalysts in C–C and C–heteroatom bond-forming reactions". Chem. Commun., nr 15 (2003): 1787–96. http://dx.doi.org/10.1039/b211298c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Sengoku, Tetsuya, Tomoya Hamamatsu, Toshiyasu Inuzuka, Masaki Takahashi i Hidemi Yoda. "ChemInform Abstract: New Synthetic Methodology Toward Macrolides/Macrolactams via Palladium-Catalyzed Carbon-Heteroatom Bond-Forming Reactions." ChemInform 42, nr 50 (17.11.2011): no. http://dx.doi.org/10.1002/chin.201150160.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Oliver-Meseguer, Judit, Antonio Leyva-Perez i Avelino Corma. "ChemInform Abstract: Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution." ChemInform 45, nr 16 (3.04.2014): no. http://dx.doi.org/10.1002/chin.201416027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

NAKAMURA, Eiichi. "Carbon-carbon bond forming reactions via metal homoenolates." Journal of Synthetic Organic Chemistry, Japan 47, nr 10 (1989): 931–38. http://dx.doi.org/10.5059/yukigoseikyokaishi.47.931.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

SUZUKI, Hitomi, Hajime MANABE i Masahiko INOUYE. "Sodium telluride-mediated carbon-carbon bond-forming reactions." NIPPON KAGAKU KAISHI, nr 7 (1987): 1485–89. http://dx.doi.org/10.1246/nikkashi.1987.1485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Cossy, Janine, François Lutz, Valérie Alauze i Christophe Meyer. "Carbon-Carbon Bond Forming Reactions by using Bistrifluoromethanesulfonimide". Synlett 2002, nr 01 (2002): 0045–48. http://dx.doi.org/10.1055/s-2002-19329.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ravelli, Davide, Stefano Protti i Maurizio Fagnoni. "Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates". Chemical Reviews 116, nr 17 (12.04.2016): 9850–913. http://dx.doi.org/10.1021/acs.chemrev.5b00662.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Mayr, Herbert, Bernhard Kempf i Armin R. Ofial. "π-Nucleophilicity in Carbon−Carbon Bond-Forming Reactions". Accounts of Chemical Research 36, nr 1 (styczeń 2003): 66–77. http://dx.doi.org/10.1021/ar020094c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ziegler, Frederick E., i Yizhe Wang. "Carbon-carbon bond forming reactions with oxiranyl radicals". Tetrahedron Letters 37, nr 35 (sierpień 1996): 6299–302. http://dx.doi.org/10.1016/0040-4039(96)01384-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Yurovskaya, M. A., i O. D. Mit'kin. "Functionalization of pyridines. 3. Reactions forming a carbon-heteroatom bond with group IV, V, and VI elements". Chemistry of Heterocyclic Compounds 35, nr 4 (kwiecień 1999): 383–435. http://dx.doi.org/10.1007/bf02319329.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Rossi, Renzo, Fabio Bellina i Adriano Carpita. "ChemInform Abstract: Development and Applications of Selective Palladium-Catalyzed Carbon-Carbon Bond and Carbon-Heteroatom Bond Forming Reactions Which Involve Stereodefined 2,3-Dibromo-2-alkenoates". ChemInform 30, nr 50 (12.06.2010): no. http://dx.doi.org/10.1002/chin.199950272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Babu, Srinivasarao A., Ramasamy V. Anand i Sripada S. V. Ramasastry. "Cinchona Alkaloid-Catalyzed Stereoselective Carbon-Carbon Bond Forming Reactions". Recent Patents on Catalysis 2, nr 1 (1.04.2013): 47–67. http://dx.doi.org/10.2174/2211548x11302010003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

OKU, Akira, i Toshiro HARADA. "Selective carbon-carbon bond forming reactions utilizing carbene reaction." Journal of Synthetic Organic Chemistry, Japan 44, nr 8 (1986): 736–55. http://dx.doi.org/10.5059/yukigoseikyokaishi.44.736.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii