Gotowa bibliografia na temat „Carbon-heteroatom Bond Forming Reactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Carbon-heteroatom Bond Forming Reactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Carbon-heteroatom Bond Forming Reactions"
Corma, A., A. Leyva-Pérez i Maria J. Sabater. "Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions". Chemical Reviews 111, nr 3 (9.03.2011): 1657–712. http://dx.doi.org/10.1021/cr100414u.
Pełny tekst źródłaLumb, Jean-Philip, i Kenneth Esguerra. "Cu(III)-Mediated Aerobic Oxidations". Synthesis 51, nr 02 (3.12.2018): 334–58. http://dx.doi.org/10.1055/s-0037-1609635.
Pełny tekst źródłaTakemoto, Yoshiji, i Hideto Miyabe. "ChemInform Abstract: Asymmetric Carbon-Heteroatom Bond-Forming Reactions". ChemInform 42, nr 18 (7.04.2011): no. http://dx.doi.org/10.1002/chin.201118241.
Pełny tekst źródłaDaoust, Benoit, Nicolas Gilbert, Paméla Casault, François Ladouceur i Simon Ricard. "1,2-Dihaloalkenes in Metal-Catalyzed Reactions". Synthesis 50, nr 16 (9.07.2018): 3087–113. http://dx.doi.org/10.1055/s-0037-1610174.
Pełny tekst źródłaMiyabe, Hideto, i Yoshiji Takemoto. "Cascade radical reactions via carbon-carbon/heteroatom bond-forming process". Universal Organic Chemistry 2, nr 1 (2014): 1. http://dx.doi.org/10.7243/2053-7670-2-1.
Pełny tekst źródłaHosoya, Keisuke, Minami Odagi i Kazuo Nagasawa. "Guanidine organocatalysis for enantioselective carbon-heteroatom bond-forming reactions". Tetrahedron Letters 59, nr 8 (luty 2018): 687–96. http://dx.doi.org/10.1016/j.tetlet.2017.12.058.
Pełny tekst źródłaCorma, A., A. Leyva-Perez i Maria J. Sabater. "ChemInform Abstract: Gold-Catalyzed Carbon-Heteroatom Bond-Forming Reactions". ChemInform 42, nr 29 (27.06.2011): no. http://dx.doi.org/10.1002/chin.201129225.
Pełny tekst źródłaBanerjee, Bubun. "Microwave-assisted Carbon-carbon and Carbon-heteroatom Bond Forming Reactions - Part 1A". Current Microwave Chemistry 7, nr 1 (23.06.2020): 3–4. http://dx.doi.org/10.2174/221333560701200422091717.
Pełny tekst źródłaBanerjee, Bubun. "Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 1B". Current Microwave Chemistry 7, nr 2 (6.08.2020): 84–85. http://dx.doi.org/10.2174/221333560702200714141435.
Pełny tekst źródłaBanerjee, Bubun. "Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 2A". Current Microwave Chemistry 8, nr 2 (6.12.2021): 56–57. http://dx.doi.org/10.2174/221333560802211028163413.
Pełny tekst źródłaRozprawy doktorskie na temat "Carbon-heteroatom Bond Forming Reactions"
Maluenda, Borderas Irene. "(N-heterocyclic carbene) : metal catalysed carbon-carbon and carbon-heteroatom bond-forming reactions". Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/76274/.
Pełny tekst źródłaCazin, Catherine Suzanne Julienne. "Catalysis of carbon-carbon and carbon-heteroatom bond-forming reactions : the importance of the palladium source". Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248165.
Pełny tekst źródłaHoskins, Travis Justin Christopher. "Carbon-carbon bond forming reactions". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29769.
Pełny tekst źródłaCommittee Chair: Dr. Christopher Jones; Committee Co-Chair: Dr. Pradeep Agrawal; Committee Member: Dr. Sujit Banerjee; Committee Member: Dr. Tom Fuller. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Casitas, Montero Alícia. "Reactivity of well-defined organometallic copper(III) complexes in carbon-heteroatom bond forming reactions". Doctoral thesis, Universitat de Girona, 2012. http://hdl.handle.net/10803/81985.
Pełny tekst źródłaAquesta tesi es centra en el camp de la química organometàl•lica del coure(III) que roman sense explorar. Els complexos arilcoure(III) s'han proposat com a intermedis clau en les reaccions de condensació Ullmann que consisteixen en l'acoblament d'halurs d'arils i nucleòfils basats en heteroàtoms catalitzades amb coure. L'estudi de la reactivitat de complexos arilcoure(III) ben definits pot proporcionar una millor comprensió del mecanisme de les reaccions de condensació Ullmann, el qual es troba sota un intens debat. En aquesta tesi doctoral s'estudia la viabilitat del complexos arilcoure(III), estabilitzats en lligands macrocíclics, de participar en reaccions de formació d'enllaç carboni-heteroàtom. S'han desenvolupat reaccions de formació d'enllaç C-N i C-O així com reaccions d'intercanvi d'halurs, on s'inclouen fluoracions, catalitzades amb coure i basades en un cicle catalític Cu(I)/Cu(III) utilitzant substrats models d'halur d'aril. S'ha obtingut una comprensió fonamental de les etapes redox a dos electrons, addició oxidant i eliminació reductiva, en coure.
Graßl, Simon [Verfasser], i Paul [Akademischer Betreuer] Knochel. "Elaboration of electrophilic carbon heteroatom bond forming reactions using organozinc reagents / Simon Graßl ; Betreuer: Paul Knochel". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1210424398/34.
Pełny tekst źródłaBentz, Emilie Louise Marie. "Zinc enolate coupling : carbon-carbon bond forming reactions". Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419263.
Pełny tekst źródłaGates, Bradley Durward. "Novel thermal and electrochemical carbon-carbon bond-forming reactions /". The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847761307998.
Pełny tekst źródłaMori-Quiroz, Luis Martin. "Transition metal catalyzed Carbon-nitrogen bond forming reactions". Revista de Química, 2015. http://repositorio.pucp.edu.pe/index/handle/123456789/101381.
Pełny tekst źródłaCarbon-nitrogen (C–N) bond forming reactions are fundamental transformations in nature and also basic processes for the preparation of molecules and materials relevant to human activities. The development of new and efficient reactions for the formation of C–N bonds are therefore of great interest in academic and industrial settings. Progress in the last 20 years has focused mainly in Csp2–N bond forming processes; however, there is growing range of transition metal catalyzed reactions for the introduction of nitrogen in alkyl frameworks (Csp3–N bond formation). This article describes a selection of modern catalytic methods for the formation of C–N bonds.
Tamuang, Suparb. "Mesoporous silica supported catalysts for carbon-carbon bond forming reactions". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3738/.
Pełny tekst źródłaMiller, Karen M. (Karen Marie). "Selective, nickel-catalyzed carbon-carbon bond-forming reactions of alkynes". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32482.
Pełny tekst źródłaVita.
Includes bibliographical references.
Catalytic addition reactions to alkynes are among the most useful and efficient methods for preparing diverse types of substituted olefins. Controlling both regioselectivity and (EIZ)- selectivity in such transformations presents a significant challenge. In reactions that also involve the creation of a new stereocenter, the development of enantioselective processes is highly desirable. Several novel, nickel-catalyzed carbon-carbon bond-forming reactions of alkynes that display excellent regioselectivity and (E/Z)-selectivity are described. These reactions afford synthetically useful allylic and homoallylic alcohols, often with high enantioselectivity. A highly enantioselective method for the nickel-catalyzed reductive coupling of alkynes and aldehydes has been realized using the commercially available (+)- neomenthyldiphenylphosphine as a chiral ligand. Allylic alcohols are afforded with complete (E/Z)-selectivity, generally >95:5 regioselectivity, and in up to 96% ee. In conjuction with ozonolysis, this process is complementary to existing methods of enantioselective [alpha]-hydroxy ketone synthesis. In alkene-directed, nickel-catalyzed reductive couplings of 1,3-enynes with aldehydes and epoxides, the conjugated alkene dramatically enhances reactivity and uniformly directs regioselectivity, independent of the nature of the other alkyne substituent (aryl, alkyl (1°, 2°, 3°)) or the degree of alkene substitution (mono-, di-, tri-, and tetrasubstituted). The highly substituted 1,3-diene products are useful in organic synthesis and, in conjunction with a Rh-catalyzed, siteselective hydrogenation, afford allylic and homoallylic alcohols that previously could not be prepared in high regioselectivity (or at all) with related Ni-catalyzed alkyne coupling reactions. Enantiomerically enriched terminal epoxides can be employed to afford enantiomerically enriched homoallylic alcohols. P-chiral, monodentate ferrocenyl phosphine ligands are efficient promoters of catalytic, asymmetric reductive coupling reactions of 1,3-enynes with aromatic aldehydes and with ketones. The latter represents the first catalytic intermolecular reductive coupling of alkynes and ketones, asymmetric or otherwise, to be reported. Both of these methods afford chiral 1,3-dienes in excellent regioselectivity and modest enantioselectivity. Nickel-catalyzed reductive couplings of 1,6-enynes and aldehydes also display very high (>95 : 5) regioselectivity. Use of a monodentate phosphine as an additive leads to formation of the opposite regioisomer in equal and opposite selectivity (5: >95). These results provide strong evidence for an interaction between the remote alkene and the metal center during the regioselectivity-determining step.
by Karen M. Miller..
Ph.D.
Książki na temat "Carbon-heteroatom Bond Forming Reactions"
M, Roberts Stanley, red. Metal catalysed carbon-carbon bond-forming reactions. Chichester, West Sussex, England: John Wiley, 2004.
Znajdź pełny tekst źródłaRoberts, Stanley M., Jianliang Xiao, John Whittall i Tom E. Pickett, red. Catalysts for Fine Chemical Synthesis, Volume 3, Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470862017.
Pełny tekst źródłaSharma, Rakesh Kumar, i Bubun Banerjee. Green-Bond Forming Reactions: Carbon-Carbon and Carbon-Heteroatom. de Gruyter GmbH, Walter, 2022.
Znajdź pełny tekst źródłaSharma, Rakesh Kumar, i Bubun Banerjee. Green-Bond Forming Reactions: Carbon-Carbon and Carbon-Heteroatom. de Gruyter GmbH, Walter, 2022.
Znajdź pełny tekst źródłaSharma, Rakesh Kumar, i Bubun Banerjee. Green-Bond Forming Reactions: Carbon-Carbon and Carbon-Heteroatom. de Gruyter GmbH, Walter, 2022.
Znajdź pełny tekst źródłaFagnou, Keith. New rhodium-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions for organic synthesis. 2002.
Znajdź pełny tekst źródłaDanheiser, Rick L. Asymmetric Carbon-Carbon Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2018.
Znajdź pełny tekst źródłaRoberts, Stanley M., John Whittall, Jianliang Xiao i Tom E. Pickett. Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Wiley & Sons, Incorporated, John, 2007.
Znajdź pełny tekst źródłaRoberts, Stanley M., John Whittall, Jianliang Xiao i Tom E. Pickett. Catalysts for Fine Chemical Synthesis - Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Wiley & Sons Australia, Limited, John, 2005.
Znajdź pełny tekst źródłaQuach, Tan Dai. Organotrifluoroborate salts in palladium-catalyzed carbon-carbon and copper-mediated carbon-nitrogen bond forming reactions. 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Carbon-heteroatom Bond Forming Reactions"
Koser, Gerald F. "Heteroatom-Heteroatom-Bond Forming Reactions". W Hypervalent Iodine Chemistry, 173–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_6.
Pełny tekst źródłaKoser, Gerald F. "C-Heteroatom-Bond Forming Reactions". W Hypervalent Iodine Chemistry, 137–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_5.
Pełny tekst źródłaAtta-ur-Rahman i Zahir Shah. "Stereoselective Carbon-Carbon Bond Forming Reactions". W Stereoselective Synthesis in Organic Chemistry, 185–396. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8327-7_4.
Pełny tekst źródłaParashar, Rakesh Kumar. "Carbon-Carbon Double Bond Forming Reactions". W Reaction Mechanisms in Organic Synthesis, 148–90. West Sussex, United Kingdom: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118681299.ch4.
Pełny tekst źródłaWolfe, John P., Joshua D. Neukom i Duy H. Mai. "Synthesis of Saturated Five-Membered Nitrogen Heterocycles via Pd-Catalyzed CN Bond-Forming Reactions". W Catalyzed Carbon-Heteroatom Bond Formation, 1–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch1.
Pełny tekst źródłaMaruoka, Keiji. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Cycloaddition Reactions". W Catalytic Asymmetric Synthesis, 465–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch14.
Pełny tekst źródłaMikami, Koichi, i Takeshi Nakai. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Ene Reactions". W Catalytic Asymmetric Synthesis, 543–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch17.
Pełny tekst źródłaKanai, Motomu, i Masakatsu Shibasaki. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Michael Reactions". W Catalytic Asymmetric Synthesis, 569–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch18.
Pełny tekst źródłaParashar, Rakesh Kumar. "Transition Metal-Mediated Carbon-Carbon Bond Forming Reactions". W Reaction Mechanisms in Organic Synthesis, 191–223. West Sussex, United Kingdom: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118681299.ch5.
Pełny tekst źródłaTrost, Barry M., i Chulbom Lee. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Allylic Alkylation Reactions". W Catalytic Asymmetric Synthesis, 593–649. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch19.
Pełny tekst źródła