Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Carbon-Based Nanomaterials -Biomedical Application.

Artykuły w czasopismach na temat „Carbon-Based Nanomaterials -Biomedical Application”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carbon-Based Nanomaterials -Biomedical Application”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Matija, Lidija, Roumiana Tsenkova, Jelena Munćan, Mari Miyazaki, Kyoko Banba, Marija Tomić i Branislava Jeftić. "Fullerene Based Nanomaterials for Biomedical Applications: Engineering, Functionalization and Characterization". Advanced Materials Research 633 (styczeń 2013): 224–38. http://dx.doi.org/10.4028/www.scientific.net/amr.633.224.

Pełny tekst źródła
Streszczenie:
Since their discovery in 1985, fullerenes have attracted considerable attention. Their unique carbon cage structure provides numerous opportunities for functionalization, giving this nanomaterial great potential for applications in the field of medicine. Analysis of the chemical, physical, and biological properties of fullerenes and their derivatives showed promising results. In this study, functionalized fullerene based nanomaterials were characterized using near infrared spectroscopy, and a novel method - Aquaphotomics. These nanomaterials were then used for engineering a new skin cream formula for their application in cosmetics and medicine. In this paper, results of nanocream effects on the skin (using near infrared spectroscopy and aquaphotomics), and existing results of biocompatibility and cytotoxicity of fullerene base nanomaterials, are presented.
Style APA, Harvard, Vancouver, ISO itp.
2

Mgbemena, Chinedum, i Chika Mgbemena. "Carbon Nanomaterials for Tailored Biomedical Applications". Asian Review of Mechanical Engineering 10, nr 2 (5.11.2021): 24–33. http://dx.doi.org/10.51983/arme-2021.10.2.3167.

Pełny tekst źródła
Streszczenie:
Carbon Fibre (CF) and Carbon Nanotube (CNT) are typical Carbon nanomaterials that possess unique features which make them particularly attractive for biomedical applications. This paper is a review of the Carbon Fibre (CF) and Carbon Nanotube (CNT) for biomedical applications. In this paper, we describe their properties and tailored biomedical applications. The most recent state of the art in the biomedical application of CFs and CNTs were reviewed.
Style APA, Harvard, Vancouver, ISO itp.
3

Kumar, Santosh, Zhi Wang, Wen Zhang, Xuecheng Liu, Muyang Li, Guoru Li, Bingyuan Zhang i Ragini Singh. "Optically Active Nanomaterials and Its Biosensing Applications—A Review". Biosensors 13, nr 1 (4.01.2023): 85. http://dx.doi.org/10.3390/bios13010085.

Pełny tekst źródła
Streszczenie:
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader’s benefit.
Style APA, Harvard, Vancouver, ISO itp.
4

Abu Owida, Hamza, Nidal M. Turab i Jamal Al-Nabulsi. "Carbon nanomaterials advancements for biomedical applications". Bulletin of Electrical Engineering and Informatics 12, nr 2 (1.04.2023): 891–901. http://dx.doi.org/10.11591/eei.v12i2.4310.

Pełny tekst źródła
Streszczenie:
The development of new technologies has helped tremendously in delivering timely, appropriate, acceptable, and reasonably priced medical treatment. Because of developments in nanoscience, a new class of nanostructures has emerged. Nanomaterials, because of their small size, display exceptional physio-chemical capabilities such as enhanced absorption and reactivity, increased surface area, molar extinction coefficients, tunable characteristics, quantum effects, and magnetic and optical properties. Researchers are interested in carbon-based nanomaterials due to their unique chemical and physical properties, which vary in thermodynamic, biomechanical, electrical, optical, and structural aspects. Due to their inherent properties, carbon nanomaterials, including fullerenes, graphene, carbon nanotubes (CNTs), and carbon nanofibers (CNFs), have been intensively studied for biomedical applications. This article is a review of the most recent findings about the development of carbon-based nanomaterials for use in biosensing, drug delivery, and cancer therapy, among other things.
Style APA, Harvard, Vancouver, ISO itp.
5

Huang, Zhicheng, Amin Zhang, Qian Zhang i Daxiang Cui. "Nanomaterial-based SERS sensing technology for biomedical application". Journal of Materials Chemistry B 7, nr 24 (2019): 3755–74. http://dx.doi.org/10.1039/c9tb00666d.

Pełny tekst źródła
Streszczenie:
Over the past few years, nanomaterial-based surface-enhanced Raman scattering (SERS) detection has emerged as a new exciting field in which theoretical and experimental studies of the structure and function of nanomaterials have become a focus.
Style APA, Harvard, Vancouver, ISO itp.
6

Gatou, Maria-Anna, Ioanna-Aglaia Vagena, Natassa Pippa, Maria Gazouli, Evangelia A. Pavlatou i Nefeli Lagopati. "The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications". Crystals 13, nr 8 (10.08.2023): 1236. http://dx.doi.org/10.3390/cryst13081236.

Pełny tekst źródła
Streszczenie:
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Style APA, Harvard, Vancouver, ISO itp.
7

Jiwanti, Prastika K., Brasstira Y. Wardhana, Laurencia G. Sutanto, Diva Meisya Maulina Dewi, Ilmanda Zalzabhila Danistya Putri i Ilmi Nur Indira Savitri. "Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review". Molecules 27, nr 21 (4.11.2022): 7578. http://dx.doi.org/10.3390/molecules27217578.

Pełny tekst źródła
Streszczenie:
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Style APA, Harvard, Vancouver, ISO itp.
8

Plachá, Daniela, i Josef Jampilek. "Graphenic Materials for Biomedical Applications". Nanomaterials 9, nr 12 (11.12.2019): 1758. http://dx.doi.org/10.3390/nano9121758.

Pełny tekst źródła
Streszczenie:
Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017–2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.
Style APA, Harvard, Vancouver, ISO itp.
9

Rajakumar, Govindasamy, Xiu-Hua Zhang, Thandapani Gomathi, Sheng-Fu Wang, Mohammad Azam Ansari, Govindarasu Mydhili, Gnanasundaram Nirmala, Mohammad A. Alzohairy i Ill-Min Chung. "Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review". Processes 8, nr 3 (20.03.2020): 355. http://dx.doi.org/10.3390/pr8030355.

Pełny tekst źródła
Streszczenie:
Among a large number of current biomedical applications in the use of medical devices, carbon-based nanomaterials such as graphene (G), graphene oxides (GO), reduced graphene oxide (rGO), and carbon nanotube (CNT) are frontline materials that are suitable for developing medical devices. Carbon Based Nanomaterials (CBNs) are becoming promising materials due to the existence of both inorganic semiconducting properties and organic π-π stacking characteristics. Hence, it could effectively simultaneously interact with biomolecules and response to the light. By taking advantage of such aspects in a single entity, CBNs could be used for developing biomedical applications in the future. The recent studies in developing carbon-based nanomaterials and its applications in targeting drug delivery, cancer therapy, and biosensors. The development of conjugated and modified carbon-based nanomaterials contributes to positive outcomes in various therapies and achieved emerging challenges in preclinical biomedical applications. Subsequently, diverse biomedical applications of carbon nanotube were also deliberately discussed in the light of various therapeutic advantages.
Style APA, Harvard, Vancouver, ISO itp.
10

Hong, Le, Shu-Han Luo, Chen-Hao Yu, Yu Xie, Meng-Ying Xia, Ge-Yun Chen i Qiang Peng. "Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy". Pharmaceutical Nanotechnology 7, nr 2 (10.06.2019): 129–46. http://dx.doi.org/10.2174/2211738507666190320160802.

Pełny tekst źródła
Streszczenie:
In the past decades, nanomaterials have shown great potential in biomedical fields, especially in drug delivery, imaging and targeted therapy. Recently, the development of novel functional nanomaterials for antibacterial application has attracted much attention. Compared to the traditional direct use of antibiotics, antibacterial nanomaterials either as drug delivery systems or active agents have a higher efficacy and lower side effects. Herein, we will focus on the antibacterial applications of four commonly used nanomaterials, including metal-based nanomaterials, polymeric nanoparticles, graphene oxides or carbon-based nanomaterials and nanogels.
Style APA, Harvard, Vancouver, ISO itp.
11

Gusev, Alexander A. "Frontiers in Nanotoxicology". Nanomaterials 12, nr 18 (16.09.2022): 3219. http://dx.doi.org/10.3390/nano12183219.

Pełny tekst źródła
Streszczenie:
The Special Issue of Nanomaterials “Frontiers in Nanotoxicology” highlights the modern problems of nanotoxicology and nanobiomedicine, including the toxicity of metal-based, silicon-based, carbon-based, and other types of nanoparticles, occupational safety of nanoproduction workers, comprehensive assessment on new biomedical nanomaterials, improvement of nanotoxicology methods, as well as the current state and prospects of research in the fields of theoretical, experimental, and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles activated by a low-frequency non-heating alternating magnetic field, biomedical applications and the toxicity of graphene nanoribbons, and fetotoxicity of nanoparticles [...]
Style APA, Harvard, Vancouver, ISO itp.
12

Gandhi, Mansi, i Khairunnisa Amreen. "Emerging Trends in Nanomaterial-Based Biomedical Aspects". Electrochem 4, nr 3 (4.08.2023): 365–88. http://dx.doi.org/10.3390/electrochem4030024.

Pełny tekst źródła
Streszczenie:
Comprehending the interfacial interaction of nanomaterials (NMs) and biological systems is a significant research interest. NMs comprise various nanoparticles (NPs) like carbon nanotubes, graphene oxides, carbon dots, graphite nanopowders, etc. These NPs show a variety of interactions with biological interfaces via organic layers, therapeutic molecules, proteins, DNA, and cellular matrices. A number of biophysical and colloidal forces act at the morphological surface to regulate the biological responses of bio-nanoconjugates, imparting distinct physical properties to the NMs. The design of future-generation nano-tools is primarily based on the basic properties of NMs, such as shape, size, compositional, functionality, etc., with studies being carried out extensively. Understanding their properties promotes research in the medical and biological sciences and improves their applicability in the health management sector. In this review article, in-depth and critical analysis of the theoretical and experimental aspects involving nanoscale material, which have inspired various biological systems, is the area of focus. The main analysis involves different self-assembled synthetic materials, bio-functionalized NMs, and their probing techniques. The present review article focuses on recent emerging trends in the synthesis and applications of nanomaterials with respect to various biomedical applications. This article provides value to the literature as it summarizes the state-of-the-art nanomaterials reported, especially within the health sector. It has been observed that nanomaterial applications in drug design, diagnosis, testing, and in the research arena, as well as many fatal disease conditions like cancer and sepsis, have explored alongwith drug therapies and other options for the delivery of nanomaterials. Even the day-to-day life of the synthesis and purification of these materials is changing to provide us with a simplified process. This review article can be useful in the research sector as a single platform wherein all types of nanomaterials for biomedical aspects can be understood in detail.
Style APA, Harvard, Vancouver, ISO itp.
13

Mousavi, Seyyed Mojtaba, Khadije Yousefi, Seyyed Alireza Hashemi, Marzie Afsa, Sonia BahranI, Ahmad Gholami, Yasmin Ghahramani, Ali Alizadeh i Wei-Hung Chiang. "Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering". Nanomaterials 11, nr 11 (22.10.2021): 2800. http://dx.doi.org/10.3390/nano11112800.

Pełny tekst źródła
Streszczenie:
Dental tissue engineering (TE) is undergoing significant modifications in dental treatments. TE is based on a triad of stem cells, signaling molecules, and scaffolds that must be understood and calibrated with particular attention to specific dental sectors. Renewable and eco-friendly carbon-based nanomaterials (CBMs), including graphene (G), graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots (GQD), carbon nanotube (CNT), MXenes and carbide, have extraordinary physical, chemical, and biological properties. In addition to having high surface area and mechanical strength, CBMs have greatly influenced dental and biomedical applications. The current study aims to explore the application of CBMs for dental tissue engineering. CBMs are generally shown to have remarkable properties, due to various functional groups that make them ideal materials for biomedical applications, such as dental tissue engineering.
Style APA, Harvard, Vancouver, ISO itp.
14

Mitrofanova, I. V., I. V. Milto, I. V. Suhodolo i G. Yu Vasyukov. "OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES". Bulletin of Siberian Medicine 13, nr 1 (28.02.2014): 135–44. http://dx.doi.org/10.20538/1682-0363-2014-1-135-144.

Pełny tekst źródła
Streszczenie:
Nanomaterials – materials, whouse structure elements has proportions doesn’t exceed 100 nm. In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.
Style APA, Harvard, Vancouver, ISO itp.
15

Gupta, Tejendra Kumar, Pattabhi Ramaiah Budarapu, Sivakumar Reddy Chappidi, Sudhir Sastry Y.B., Marco Paggi i Stephane P. Bordas. "Advances in Carbon Based Nanomaterials for Bio-Medical Applications". Current Medicinal Chemistry 26, nr 38 (3.01.2019): 6851–77. http://dx.doi.org/10.2174/0929867326666181126113605.

Pełny tekst źródła
Streszczenie:
: The unique mechanical, electrical, thermal, chemical and optical properties of carbon based nanomaterials (CBNs) like: Fullerenes, Graphene, Carbon nanotubes, and their derivatives made them widely used materials for various applications including biomedicine. Few recent applications of the CBNs in biomedicine include: cancer therapy, targeted drug delivery, bio-sensing, cell and tissue imaging and regenerative medicine. However, functionalization renders the toxicity of CBNs and makes them soluble in several solvents including water, which is required for biomedical applications. Hence, this review represents the complete study of development in nanomaterials of carbon for biomedical uses. Especially, CBNs as the vehicles for delivering the drug in carbon nanomaterials is described in particular. The computational modeling approaches of various CBNs are also addressed. Furthermore, prospectus, issues and possible challenges of this rapidly developing field are highlighted.
Style APA, Harvard, Vancouver, ISO itp.
16

Chow, James C. L. "Special Issue: Application of Nanomaterials in Biomedical Imaging and Cancer Therapy". Nanomaterials 12, nr 5 (22.02.2022): 726. http://dx.doi.org/10.3390/nano12050726.

Pełny tekst źródła
Streszczenie:
Nanomaterials of different types—namely, inorganic-based, organic-based, carbon-based, and composite-based ones, with various structures such as nanoparticles, nanofibers, nanorods, nanoshells, and nanostars, all have demonstrated a wide range of medical biophysical and chemical properties [...]
Style APA, Harvard, Vancouver, ISO itp.
17

Muttaqien, Sjaikhurrizal El, Indra Memdi Khoris, Sabar Pambudi i Enoch Y. Park. "Nanosphere Structures Using Various Materials: A Strategy for Signal Amplification for Virus Sensing". Sensors 23, nr 1 (23.12.2022): 160. http://dx.doi.org/10.3390/s23010160.

Pełny tekst źródła
Streszczenie:
Nanomaterials have been explored in the sensing research field in the last decades. Mainly, 3D nanomaterials have played a vital role in advancing biomedical applications, and less attention was given to their application in the field of biosensors for pathogenic virus detection. The versatility and tunability of a wide range of nanomaterials contributed to the development of a rapid, portable biosensor platform. In this review, we discuss 3D nanospheres, one of the classes of nanostructured materials with a homogeneous and dense matrix wherein a guest substance is carried within the matrix or on its surface. This review is segmented based on the type of nanosphere and their elaborative application in various sensing techniques. We emphasize the concept of signal amplification strategies using different nanosphere structures constructed from a polymer, carbon, silica, and metal–organic framework (MOF) for rendering high-level sensitivity of virus detection. We also briefly elaborate on some challenges related to the further development of nanosphere-based biosensors, including the toxicity issue of the used nanomaterial and the commercialization hurdle.
Style APA, Harvard, Vancouver, ISO itp.
18

Kim, Sung-Hyun, So-Hye Hong, Jin Hee Lee, Dong Han Lee, Kikyung Jung, Jun-Young Yang, Hyo-Sook Shin, JeongPyo Lee, Jayoung Jeong i Jae-Ho Oh. "Skin Sensitization Evaluation of Carbon-Based Graphene Nanoplatelets". Toxics 9, nr 3 (17.03.2021): 62. http://dx.doi.org/10.3390/toxics9030062.

Pełny tekst źródła
Streszczenie:
Graphene nanoplatelets (GNPs) are one of the major types of carbon based nanomaterials that have different industrial and biomedical applications. There is a risk of exposure to GNP material in individuals involved in their large-scale production and in individuals who use products containing GNPs. Determining the exact toxicity of GNP nanomaterials is a very important agenda. This research aimed to evaluate the skin sensitization potentials induced by GNPs using two types of alternative to animal testing. We analyzed the physicochemical characteristics of the test material by selecting a graphene nanomaterial with a nano-size on one side. Thereafter, we evaluated the skin sensitization effect using an in vitro and an in vivo alternative test method, respectively. As a result, we found that GNPs do not induce skin sensitization. In addition, it was observed that the administration of GNPs did not induce cytotoxicity and skin toxicity. This is the first report of skin sensitization as a result of GNPs obtained using alternative test methods. These results suggest that GNP materials do not cause skin sensitization, and these assays may be useful in evaluating the skin sensitization of some nanomaterials.
Style APA, Harvard, Vancouver, ISO itp.
19

Ansari, Mohammad Omaish, Kalamegam Gauthaman, Abdurahman Essa, Sidi A. Bencherif i Adnan Memic. "Graphene and Graphene-Based Materials in Biomedical Applications". Current Medicinal Chemistry 26, nr 38 (3.01.2019): 6834–50. http://dx.doi.org/10.2174/0929867326666190705155854.

Pełny tekst źródła
Streszczenie:
: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.
Style APA, Harvard, Vancouver, ISO itp.
20

Soleyman, Rouhollah, Sorina Hirbod i Mohsen Adeli. "Advances in the biomedical application of polymer-functionalized carbon nanotubes". Biomaterials Science 3, nr 5 (2015): 695–711. http://dx.doi.org/10.1039/c4bm00421c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Roupcova, Petra, Karel Klouda, Paula Brandeburova, Rastislav Sipos, Jan Hives, Miroslav Gal, Tomas Mackulak, Michaela Skrizovska i Lenka Kissikova. "Carbon family nanomaterials — new applications and technologies". Acta Chimica Slovaca 13, nr 1 (1.04.2020): 77–87. http://dx.doi.org/10.2478/acs-2020-0012.

Pełny tekst źródła
Streszczenie:
AbstractResearch on carbon-based nanomaterials (CBNMs) and their development is one of the major scientific disciplines of the last century. This is mainly because of their unique properties which can lead to improvements in industrial technology or new medical applications. Therefore, it is necessary to examine their properties such as shape, size, chemical composition, density, toxicity, etc. This article focuses on the general characteristics of nanomaterials (NMs) and their behavior when entering the environment (water and soil). In addition, it presents individual members of the graphene family including porous ecological carbon (biochar). The article mainly deals with the new potential technologies of CBNMs considering their possible toxic and genotoxic effects. This review also highlights the latest developments in the application of self-propelled micromotors for green chemistry applications. Finally, it points to the potential biomedical applications of CBNMs.
Style APA, Harvard, Vancouver, ISO itp.
22

Behi, Mohammadreza, Leila Gholami, Sina Naficy, Stefano Palomba i Fariba Dehghani. "Carbon dots: a novel platform for biomedical applications". Nanoscale Advances 4, nr 2 (2022): 353–76. http://dx.doi.org/10.1039/d1na00559f.

Pełny tekst źródła
Streszczenie:
Carbon dots are a class of carbon-based nanostructures known as zero-dimensional nanomaterials. They have received a great deal of attention due to their distinctive features, which includes optical properties, ease of passivation, simple synthetic route.
Style APA, Harvard, Vancouver, ISO itp.
23

Zhao, Qinfu, Yuanzhe Lin, Ning Han, Xian Li, Hongjian Geng, Xiudan Wang, Yu Cui i Siling Wang. "Mesoporous carbon nanomaterials in drug delivery and biomedical application". Drug Delivery 24, nr 2 (listopad 2017): 94–107. http://dx.doi.org/10.1080/10717544.2017.1399300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Mahor, Alok, Prem Prakash Singh, Peeyush Bharadwaj, Neeraj Sharma, Surabhi Yadav, Jessica M. Rosenholm i Kuldeep K. Bansal. "Carbon-Based Nanomaterials for Delivery of Biologicals and Therapeutics: A Cutting-Edge Technology". C 7, nr 1 (5.02.2021): 19. http://dx.doi.org/10.3390/c7010019.

Pełny tekst źródła
Streszczenie:
After hydrogen and oxygen, carbon is the third most abundant component present in the cosmos with excellent characteristic features of binding to itself and nearly all elements. Since ancient times, carbon-based materials such as graphite, charcoal, and carbon black have been utilized for writing and drawing materials. As these materials possess excellent chemical, mechanical, electrical, and thermal features, they have been readily engineered into carbon-based nanomaterials (CNMs) such as carbon nanotubes, graphene oxide, graphene quantum dots, nanodiamonds, fullerenes, carbon nano-onions, and so forth. These materials are now widely explored in biomedical applications. Thus, the emergence of CNMs has opened up a gateway for the detection, delivery, and treatment of a multitude of diseases. They are being actively researched for applications within tissue engineering, as vaccine vectors, and for the delivery of therapeutics to the immune system. This review focuses on the recent advances in various types of CNMs, their fabrication techniques, and their application in the delivery of therapeutics both in vitro and in vivo. The review also focuses on the toxicity concern of the CNMs and the possible remedies to tackle the toxicity issues. Concluding remarks emphasize all the CNMs discussed in the review over their possible biomedical applications, while the future perspectives section discusses the approaches to bring CNMs into the mainstream of clinical trials and their therapeutic applications.
Style APA, Harvard, Vancouver, ISO itp.
25

Sharma, Prashant, Na-Yoon Jang, Jae-Won Lee, Bum Chul Park, Young Keun Kim i Nam-Hyuk Cho. "Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy". Pharmaceutics 11, nr 10 (26.09.2019): 493. http://dx.doi.org/10.3390/pharmaceutics11100493.

Pełny tekst źródła
Streszczenie:
Engineering and application of nanomaterials have recently helped advance various biomedical fields. Zinc oxide (ZnO)-based nanocomposites have become one of the most promising candidates for biomedical applications due to their biocompatibility, unique physicochemical properties, and cost-effective mass production. In addition, recent advances in nano-engineering technologies enable the generation of ZnO nanocomposites with unique three-dimensional structures and surface characteristics that are optimally designed for in vivo applications. Here, we review recent advances in the application of diverse ZnO nanocomposites, with an especial focus on their development as vaccine adjuvant and cancer immunotherapeutics, as well as their intrinsic properties interacting with the immune system and potential toxic effect in vivo. Finally, we summarize promising proof-of-concept applications as prophylactic and therapeutic vaccines against infections and cancers. Understanding the nano-bio interfaces between ZnO-based nanocomposites and the immune system, together with bio-effective design of the nanomaterial using nano-architectonic technology, may open new avenues in expanding the biomedical application of ZnO nanocomposites as a novel vaccine platform.
Style APA, Harvard, Vancouver, ISO itp.
26

Cuello, Emma Antonia, Silvestre Bongiovanni Abel, César Barbero, Inés Yslas i María Molina. "Nanomaterials as Photothermal Agents for Biomedical Applications". Science Reviews - from the end of the world 1, nr 3 (12.06.2020): 24–46. http://dx.doi.org/10.52712/sciencereviews.v1i3.20.

Pełny tekst źródła
Streszczenie:
Photothermal therapy (PTT) is a potentially curative treatment modality that in recent years has been the object of growing interest and rapid technological advances due to its specific therapeutic efficacy and because it is a non-invasive technique. Nowadays, several nanomaterials have been developed as photothermal agents including metallic and carbon-based nanoparticles, conducting polymers, and different kinds of nanocomposites, among others. In this article, the most relevant applications of these photothermal nano-agents in antibacterial and anticancer therapy are reviewed.
Style APA, Harvard, Vancouver, ISO itp.
27

Dahlan, Nuraina Anisa, Aung Thiha, Fatimah Ibrahim, Lazar Milić, Shalini Muniandy, Nurul Fauzani Jamaluddin, Bojan Petrović, Sanja Kojić i Goran M. Stojanović. "Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation". Nanomaterials 12, nr 22 (16.11.2022): 4025. http://dx.doi.org/10.3390/nano12224025.

Pełny tekst źródła
Streszczenie:
bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.
Style APA, Harvard, Vancouver, ISO itp.
28

Jing, Xirui, Zekang Xiong, Zian Lin i Tingfang Sun. "The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering". Pharmaceutics 14, nr 12 (28.11.2022): 2634. http://dx.doi.org/10.3390/pharmaceutics14122634.

Pełny tekst źródła
Streszczenie:
Recently, research on and the application of nanomaterials such as graphene, carbon nanotubes, and metal–organic frameworks has become increasingly popular in tissue engineering. In 2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advantages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility. Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus, which is a key bone tissue component with good biocompatibility and osteogenic repair ability. Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review, the structure and the physical and chemical properties of BP are described. In addition, the current applications of BP in bone tissue engineering are reviewed to aid the future research and application of BP.
Style APA, Harvard, Vancouver, ISO itp.
29

Curulli, Antonella. "Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis". Molecules 25, nr 23 (7.12.2020): 5759. http://dx.doi.org/10.3390/molecules25235759.

Pełny tekst źródła
Streszczenie:
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.
Style APA, Harvard, Vancouver, ISO itp.
30

Omurtag Ozgen, Pinar Sinem, Sezen Atasoy, Belma Zengin Kurt, Zehra Durmus, Gulsah Yigit i Aydan Dag. "Glycopolymer decorated multiwalled carbon nanotubes for dual targeted breast cancer therapy". Journal of Materials Chemistry B 8, nr 15 (2020): 3123–37. http://dx.doi.org/10.1039/c9tb02711d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Das, Sabya S., Neelam, Kashif Hussain, Sima Singh, Afzal Hussain, Abdul Faruk i Mike Tebyetekerwa. "Laponite-based Nanomaterials for Biomedical Applications: A Review". Current Pharmaceutical Design 25, nr 4 (3.06.2019): 424–43. http://dx.doi.org/10.2174/1381612825666190402165845.

Pełny tekst źródła
Streszczenie:
Laponite based nanomaterials (LBNMs) are highly diverse regarding their mechanical, chemical, and structural properties, coupled with shape, size, mass, biodegradability and biocompatibility. These ubiquitous properties of LBNMs make them appropriate materials for extensive applications. These have enormous potential for effective and targeted drug delivery comprised of numerous biodegradable materials which results in enhanced bioavailability. Moreover, the clay material has been explored in tissue engineering and bioimaging for the diagnosis and treatment of various diseases. The material has been profoundly explored for minimized toxicity of nanomedicines. The present review compiled relevant and informative data to focus on the interactions of laponite nanoparticles and application in drug delivery, tissue engineering, imaging, cell adhesion and proliferation, and in biosensors. Eventually, concise conclusions are drawn concerning biomedical applications and identification of new promising research directions.
Style APA, Harvard, Vancouver, ISO itp.
32

Huo, Feng, Wenqiong Li, Yuhang Liu, Xiaohong Liu, Chong-Yew Lee i Wei Zhang. "Review of long wavelength luminescent carbon-based nanomaterials: preparation, biomedical application and future challenges". Journal of Materials Science 56, nr 4 (23.10.2020): 2814–37. http://dx.doi.org/10.1007/s10853-020-05435-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Griger, Sydney, Ian Sands i Yupeng Chen. "Comparison between Janus-Base Nanotubes and Carbon Nanotubes: A Review on Synthesis, Physicochemical Properties, and Applications". International Journal of Molecular Sciences 23, nr 5 (27.02.2022): 2640. http://dx.doi.org/10.3390/ijms23052640.

Pełny tekst źródła
Streszczenie:
Research interest in nanoscale biomaterials has continued to grow in the past few decades, driving the need to form families of nanomaterials grouped by similar physical or chemical properties. Nanotubes have occupied a unique space in this field, primarily due to their high versatility in a wide range of biomedical applications. Although similar in morphology, members of this nanomaterial family widely differ in synthesis methods, mechanical and physiochemical properties, and therapeutic applications. As this field continues to develop, it is important to provide insight into novel biomaterial developments and their overall impact on current technology and therapeutics. In this review, we aim to characterize and compare two members of the nanotube family: carbon nanotubes (CNTs) and janus-base nanotubes (JBNts). While CNTs have been extensively studied for decades, JBNts provide a fresh perspective on many therapeutic modalities bound by the limitations of carbon-based nanomaterials. Herein, we characterize the morphology, synthesis, and applications of CNTs and JBNts to provide a comprehensive comparison between these nanomaterial technologies.
Style APA, Harvard, Vancouver, ISO itp.
34

Li, Xiao, Huiquan Jiang, Ning He, Wei-En Yuan, Yun Qian i Yuanming Ouyang. "Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering". Cyborg and Bionic Systems 2022 (10.09.2022): 1–20. http://dx.doi.org/10.34133/2022/9892526.

Pełny tekst źródła
Streszczenie:
Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, β, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.
Style APA, Harvard, Vancouver, ISO itp.
35

Rónavári, Andrea, Nóra Igaz, Dóra I. Adamecz, Bettina Szerencsés, Csaba Molnar, Zoltán Kónya, Ilona Pfeiffer i Monika Kiricsi. "Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications". Molecules 26, nr 4 (5.02.2021): 844. http://dx.doi.org/10.3390/molecules26040844.

Pełny tekst źródła
Streszczenie:
The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.
Style APA, Harvard, Vancouver, ISO itp.
36

Czarnecka, Joanna, Mateusz Kwiatkowski, Marek Wiśniewski i Katarzyna Roszek. "Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System". International Journal of Molecular Sciences 22, nr 15 (29.07.2021): 8136. http://dx.doi.org/10.3390/ijms22158136.

Pełny tekst źródła
Streszczenie:
The oxidative properties of nanomaterials arouse legitimate concerns about oxidative damage in biological systems. On the other hand, the undisputable benefits of nanomaterials promote them for biomedical applications; thus, the strategies to reduce oxidative potential are urgently needed. We aimed at analysis of nitrogen-containing carbon quantum dots (N-CQDs) in terms of their biocompatibility and internalization by different cells. Surprisingly, N-CQD uptake does not contribute to the increased oxidative stress inside cells and lacks cytotoxic influence even at high concentrations, primarily through protein corona formation. We proved experimentally that the protein coating effectively limits the oxidative capacity of N-CQDs. Thus, N-CQDs served as an immobilization support for three different enzymes with the potential to be used as therapeutics. Various kinetic parameters of immobilized enzymes were analyzed. Regardless of the enzyme structure and type of reaction catalyzed, adsorption on the nanocarrier resulted in increased catalytic efficiency. The enzymatic-protein-to-nanomaterial ratio is the pivotal factor determining the course of kinetic parameter changes that can be tailored for enzyme application. We conclude that the above properties of N-CQDs make them an ideal support for enzymatic drugs required for multiple biomedical applications, including personalized medical therapies.
Style APA, Harvard, Vancouver, ISO itp.
37

Pirzada, Muqsit, i Zeynep Altintas. "Nanomaterials for Healthcare Biosensing Applications". Sensors 19, nr 23 (2.12.2019): 5311. http://dx.doi.org/10.3390/s19235311.

Pełny tekst źródła
Streszczenie:
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Style APA, Harvard, Vancouver, ISO itp.
38

Jović, Danica, Vesna Jaćević, Kamil Kuča, Ivana Borišev, Jasminka Mrdjanovic, Danijela Petrovic, Mariana Seke i Aleksandar Djordjevic. "The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity". Nanomaterials 10, nr 8 (31.07.2020): 1508. http://dx.doi.org/10.3390/nano10081508.

Pełny tekst źródła
Streszczenie:
Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.
Style APA, Harvard, Vancouver, ISO itp.
39

Barnard, A. S. "Predicting the impact of structural diversity on the performance of nanodiamond drug carriers". Nanoscale 10, nr 19 (2018): 8893–910. http://dx.doi.org/10.1039/c8nr01688g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Janus, Łukasz, Marek Piątkowski, Julia Radwan-Pragłowska, Dariusz Bogdał i Dalibor Matysek. "Chitosan-Based Carbon Quantum Dots for Biomedical Applications: Synthesis and Characterization". Nanomaterials 9, nr 2 (16.02.2019): 274. http://dx.doi.org/10.3390/nano9020274.

Pełny tekst źródła
Streszczenie:
Rapid development in medicine and pharmacy has created a need for novel biomaterials with advanced properties such as photoluminescence, biocompability and long-term stability. The following research deals with the preparation of novel types of N-doped chitosan-based carbon quantum dots. Nanomaterials were obtained with simultaneous nitrogen-doping using biocompatible amino acids according to Green Chemistry principles. For the carbon quantum dots synthesis chitosan was used as a raw material known for its biocompability. The nanomaterials obtained in the form of lyophilic colloids were characterized by spectroscopic and spectrofluorimetric methods. Their quantum yields were determined. Additionally the cytotoxicity of the prepared bionanomaterials was evaluated by XTT (2,3-Bis-(2-methoxy-4-nitro5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt) method. Our results confirmed the formation of biocompatible quantum dots with carbon cores exhibiting luminescence in visible range. Performed studies showed that modification with lysine (11.5%) and glutamic acid (7.4%) had a high impact on quantum yield, whereas functionalization with amino acids rich in S and N atoms did not significantly increase in fluorescence properties. XTT assays as well as morphological studies on human dermal fibroblasts confirmed the lack of cytotoxicity of the prepared bionanomaterials. The study shows chitosan-based quantum dots to be promising for biomedical applications such as cell labelling, diagnostics or controlled drug delivery and release systems.
Style APA, Harvard, Vancouver, ISO itp.
41

Turhan, Emine Ayşe, Ahmet Engin Pazarçeviren, Zafer Evis i Ayşen Tezcaner. "Properties and applications of boron nitride nanotubes". Nanotechnology 33, nr 24 (30.03.2022): 242001. http://dx.doi.org/10.1088/1361-6528/ac5839.

Pełny tekst źródła
Streszczenie:
Abstract Nanomaterials have received increasing attention due to their controllable physical and chemical properties and their improved performance over their bulk structures during the last years. Carbon nanostructures are one of the most widely searched materials for use in different applications ranging from electronic to biomedical because of their exceptional physical and chemical properties. However, BN nanostructures surpassed the attention of the carbon-based nanostructure because of their enhanced thermal and chemical stabilities in addition to structural similarity with the carbon nanomaterials. Among these nanostructures, one dimensional-BN nanostructures are on the verge of development as new materials to fulfill some necessities for different application areas based on their excellent and unique properties including their tunable surface and bandgap, electronic, optical, mechanical, thermal, and chemical stability. Synthesis of high-quality boron nitride nanotubes (BNNTs) in large quantities with novel techniques provided greater access, and increased their potential use in nanocomposites, biomedical fields, and nanodevices as well as hydrogen uptake applications. In this review, properties and applications of one-dimensional BN (1D) nanotubes, nanofibers, and nanorods in hydrogen uptake, biomedical field, and nanodevices are discussed in depth. Additionally, research on native and modified forms of BNNTs and also their composites with different materials to further improve electronic, optical, structural, mechanical, chemical, and biological properties are also reviewed. BNNTs find many applications in different areas, however, they still need to be further studied for improving the synthesis methods and finding new possible future applications.
Style APA, Harvard, Vancouver, ISO itp.
42

Monaco, Antonina M., i Michele Giugliano. "Carbon-based smart nanomaterials in biomedicine and neuroengineering". Beilstein Journal of Nanotechnology 5 (23.10.2014): 1849–63. http://dx.doi.org/10.3762/bjnano.5.196.

Pełny tekst źródła
Streszczenie:
The search for advanced biomimetic materials that are capable of offering a scaffold for biological tissues during regeneration or of electrically connecting artificial devices with cellular structures to restore damaged brain functions is at the forefront of interdisciplinary research in materials science. Bioactive nanoparticles for drug delivery, substrates for nerve regeneration and active guidance, as well as supramolecular architectures mimicking the extracellular environment to reduce inflammatory responses in brain implants, are within reach thanks to the advancements in nanotechnology. In particular, carbon-based nanostructured materials, such as graphene, carbon nanotubes (CNTs) and nanodiamonds (NDs), have demonstrated to be highly promising materials for designing and fabricating nanoelectrodes and substrates for cell growth, by virtue of their peerless optical, electrical, thermal, and mechanical properties. In this review we discuss the state-of-the-art in the applications of nanomaterials in biological and biomedical fields, with a particular emphasis on neuroengineering.
Style APA, Harvard, Vancouver, ISO itp.
43

Mitura, Katarzyna, Joanna Kornacka, Elżbieta Kopczyńska, Jacek Kalisz, Ewa Czerwińska, Maciej Affeltowicz, Witold Kaczorowski i in. "Active Carbon-Based Nanomaterials in Food Packaging". Coatings 11, nr 2 (29.01.2021): 161. http://dx.doi.org/10.3390/coatings11020161.

Pełny tekst źródła
Streszczenie:
Carbon-based nanomaterials (CBN) are currently used in many biomedical applications. The research includes optimization of single grain size and conglomerates of pure detonated nanodiamond (DND), modified nanodiamond particles and graphene oxide (GO) in order to compare their bactericidal activity against food pathogens. Measurement of grain size and zeta potential was performed using the Dynamic Light Scattering (DLS) method. Surface morphology was evaluated using a Scanning Electron Microscope (SEM) and confocal microscope. X-ray diffraction (XRD) was performed in order to confirm the crystallographic structure of detonation nanodiamond particles. Bacteriostatic tests were performed by evaluating the inhibition zone of pathogens in the presence of carbon based nanomaterials. Raman spectroscopy showed differences between the content of the diamond and graphite phases in diamond nanoparticles. Fluorescence microscopy and adenosine-5′-triphosphate (ATP) determination methods were used to assess the bactericidal of bioactive polymers obtained by modification of food wrapping film using various carbon-based nanomaterials. The results indicate differences in the sizes of individual grains and conglomerates of carbon nanomaterials within the same carbon allotropes depending on surface modification. The bactericidal properties depend on the allotropic form of carbon and the type of surface modification. Depending on the grain size of carbon-based materials, surface modification, the content of the diamond and graphite phases, surface of carbon-based nanomaterials film formation shows more or less intense bactericidal properties and differentiated adhesion of bacterial biofilms to food films modified with carbon nanostructures.
Style APA, Harvard, Vancouver, ISO itp.
44

Adorinni, Simone, Maria C. Cringoli, Siglinda Perathoner, Paolo Fornasiero i Silvia Marchesan. "Green Approaches to Carbon Nanostructure-Based Biomaterials". Applied Sciences 11, nr 6 (11.03.2021): 2490. http://dx.doi.org/10.3390/app11062490.

Pełny tekst źródła
Streszczenie:
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Style APA, Harvard, Vancouver, ISO itp.
45

Li, Muyang, Ragini Singh, Yiran Wang, Carlos Marques, Bingyuan Zhang i Santosh Kumar. "Advances in Novel Nanomaterial-Based Optical Fiber Biosensors—A Review". Biosensors 12, nr 10 (8.10.2022): 843. http://dx.doi.org/10.3390/bios12100843.

Pełny tekst źródła
Streszczenie:
This article presents a concise summary of current advancements in novel nanomaterial-based optical fiber biosensors. The beneficial optical and biological properties of nanomaterials, such as nanoparticle size-dependent signal amplification, plasmon resonance, and charge-transfer capabilities, are widely used in biosensing applications. Due to the biocompatibility and bioreceptor combination, the nanomaterials enhance the sensitivity, limit of detection, specificity, and response time of sensing probes, as well as the signal-to-noise ratio of fiber optic biosensing platforms. This has established a practical method for improving the performance of fiber optic biosensors. With the aforementioned outstanding nanomaterial properties, the development of fiber optic biosensors has been efficiently promoted. This paper reviews the application of numerous novel nanomaterials in the field of optical fiber biosensing and provides a brief explanation of the fiber sensing mechanism.
Style APA, Harvard, Vancouver, ISO itp.
46

Perera, A. A. P. R., K. A. U. Madhushani, Buwanila T. Punchihewa, Anuj Kumar i Ram K. Gupta. "MXene-Based Nanomaterials for Multifunctional Applications". Materials 16, nr 3 (29.01.2023): 1138. http://dx.doi.org/10.3390/ma16031138.

Pełny tekst źródła
Streszczenie:
MXene is becoming a “rising star” material due to its versatility for a wide portfolio of applications, including electrochemical energy storage devices, electrocatalysis, sensors, biomedical applications, membranes, flexible and wearable devices, etc. As these applications promote increased interest in MXene research, summarizing the latest findings on this family of materials will help inform the scientific community. In this review, we first discuss the rapid evolutionary change in MXenes from the first reported M2XTx structure to the last reported M5X4Tx structure. The use of systematically modified synthesis routes, such as foreign atom intercalation, tuning precursor chemistry, etc., will be further discussed in the next section. Then, we review the applications of MXenes and their composites/hybrids for rapidly growing applications such as batteries, supercapacitors, electrocatalysts, sensors, biomedical, electromagnetic interference shielding, membranes, and flexible and wearable devices. More importantly, we notice that its excellent metallic conductivity with its hydrophilic nature distinguishes MXene from other materials, and its properties and applications can be further modified by surface functionalization. MXene composites/hybrids outperform pristine MXenes in many applications. In addition, a summary of the latest findings using MXene-based materials to overcome application-specific drawbacks is provided in the last few sections. We hope that the information provided in this review will help integrate lab-scale findings into commercially viable products.
Style APA, Harvard, Vancouver, ISO itp.
47

Zhang, Xiaolei, Gan Tian, Xia Zhang, Qing Wang i Zhanjun Gu. "Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications". Acta Chimica Sinica 77, nr 5 (2019): 406. http://dx.doi.org/10.6023/a18120504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Dash, D. "Biomedical Applications of Nanomaterials: Diagnosis and Therapy of Thrombotic Disorders". Annals of the National Academy of Medical Sciences (India) 53, nr 01 (styczeń 2017): 036–40. http://dx.doi.org/10.1055/s-0040-1712743.

Pełny tekst źródła
Streszczenie:
ABSTRACTWe have employed unique properties of carbon-based as well as metallic nanomaterials to develop diagnostic / therapeutic devices targeted against thrombotic disorders. We have designed a novel graphene-based biosensor that can detect individuals with high coronary risk. Further, we describe an innovative strategy to ablate pathological thrombus in situ employing near-infrared laser-irradiated gold nanorods (photothermal therapy).
Style APA, Harvard, Vancouver, ISO itp.
49

Kaushik, Nagendra, Neha Kaushik, Nguyen Linh, Bhagirath Ghimire, Anchalee Pengkit, Jirapong Sornsakdanuphap, Su-Jae Lee i Eun Choi. "Plasma and Nanomaterials: Fabrication and Biomedical Applications". Nanomaterials 9, nr 1 (14.01.2019): 98. http://dx.doi.org/10.3390/nano9010098.

Pełny tekst źródła
Streszczenie:
Application of plasma medicine has been actively explored during last several years. Treating every type of cancer remains a difficult task for medical personnel due to the wide variety of cancer cell selectivity. Research in advanced plasma physics has led to the development of different types of non-thermal plasma devices, such as plasma jets, and dielectric barrier discharges. Non-thermal plasma generates many charged particles and reactive species when brought into contact with biological samples. The main constituents include reactive nitrogen species, reactive oxygen species, and plasma ultra-violets. These species can be applied to synthesize biologically important nanomaterials or can be used with nanomaterials for various kinds of biomedical applications to improve human health. This review reports recent updates on plasma-based synthesis of biologically important nanomaterials and synergy of plasma with nanomaterials for various kind of biological applications.
Style APA, Harvard, Vancouver, ISO itp.
50

Sahoo, Sumanta Kumar, i Archana Mallik. "Fundamentals of Fascinating Graphene Nanosheets: A Comprehensive Study". Nano 14, nr 03 (marzec 2019): 1930003. http://dx.doi.org/10.1142/s1793292019300032.

Pełny tekst źródła
Streszczenie:
Graphene nanosheets have attracted immense research interest among the materials science community from electronics to the biomedical field. Being the first member of two-dimensional nanomaterials family, discovered in 2004 followed by the Nobel Prize winning in 2010, it is now readily witnessing global industrial revolutions. The nanomaterial is bestowed with such unprecedented features that can be tangible to a wide spectrum of applications ranging from energy storage devices to sensor application. Enormous flattened surfaces, superior mechanical strength and flexibility, ballistic intrinsic carrier mobility, nearly transparent nature, high thermal conductivity and room-temperature ferromagnetic behavior are few of the extraordinary attributes of the monolayer of carbon nanosheets. In this comprehensive review, an attempt has been put forward to precisely revisit and represent the literature available on the fundamental properties of graphene nanomaterials. Also, the usage of its characteristic features in various applications as well as synthesis process has been briefly discussed.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii