Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Carathéodory metric.

Artykuły w czasopismach na temat „Carathéodory metric”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carathéodory metric”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Fornæss, John Erik, i Lina Lee. "Kobayashi, Carathéodory and Sibony metric". Complex Variables and Elliptic Equations 54, nr 3-4 (marzec 2009): 293–301. http://dx.doi.org/10.1080/17476930902760450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Abate, Marco, i Jean-Pierre Vigué. "Isometries for the Carathéodory metric". Proceedings of the American Mathematical Society 136, nr 11 (20.05.2008): 3905–9. http://dx.doi.org/10.1090/s0002-9939-08-09391-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ge, Zhong. "Collapsing Riemannian Metrics to Carnot-Caratheodory Metrics and Laplacians to Sub-Laplacians". Canadian Journal of Mathematics 45, nr 3 (1.06.1993): 537–53. http://dx.doi.org/10.4153/cjm-1993-028-6.

Pełny tekst źródła
Streszczenie:
AbstractWe study the asymptotic behavior of the Laplacian on functions when the underlying Riemannian metric is collapsed to a Carnot-Carathéodory metric. We obtain a uniform short time asymptotics for the trace of the heat kernel in the case when the limit Carnot-Carathéodory metric is almost Heisenberg, the limit of which is the result of Beal-Greiner-Stanton, and Stanton-Tartakoff.
Style APA, Harvard, Vancouver, ISO itp.
4

CONNELL, CHRIS, THANG NGUYEN i RALF SPATZIER. "Carnot metrics, dynamics and local rigidity". Ergodic Theory and Dynamical Systems 42, nr 2 (9.12.2021): 614–64. http://dx.doi.org/10.1017/etds.2021.116.

Pełny tekst źródła
Streszczenie:
AbstractThis paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces.
Style APA, Harvard, Vancouver, ISO itp.
5

Fu, Siqi. "Asymptotic Expansions of Invariant Metrics of Strictly Pseudoconvex Domains". Canadian Mathematical Bulletin 38, nr 2 (1.06.1995): 196–206. http://dx.doi.org/10.4153/cmb-1995-028-9.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper we obtain the asymptotic expansions of the Carathéodory and Kobayashi metrics of strictly pseudoconvex domains with C∞ smooth boundaries in ℂn. The main result of this paper can be stated as following:Main Theorem. Let Ω be a strictly pseudoconvex domain with C∞ smooth boundary. Let FΩ(z,X) be either the Carathéodory or the Kobayashi metric of Ω. Let δ(z) be the signed distance from z to ∂Ω with δ(z) < 0 for z ∊ Ω and δ(z) ≥ 0 for z ∉ Ω. Then there exist a neighborhood U of ∂Ω, a constant C > 0, and a continuous function C(z,X):(U ∩ Ω) × ℂn -> ℝ such that and|C(z,X)| ≤ C|X| for z ∊ U ∩ Ω and X ∊ ℂn
Style APA, Harvard, Vancouver, ISO itp.
6

Krushkal, Samuel. "On the Carathéodory metric of universal Teichmüller space". Ukrainian Mathematical Bulletin 19, nr 1 (28.01.2022): 75–87. http://dx.doi.org/10.37069/1810-3200-2029-19-1-5.

Pełny tekst źródła
Streszczenie:
In contrast to finite dimensional Teichmuller spaces, all non-expanding invariant metrics on the universal Teichmuller space coincide. This important fact found various applications. We give its new, simplified proof based on some deep features of the Grunsky operator, which intrinsically relate to the universal Teichmuller space. This approach also yields a quantitative answer to Ahlfors' question.
Style APA, Harvard, Vancouver, ISO itp.
7

Krushkal, Samuel L. "On the Carathéodory metric of universal Teichmüller space". Journal of Mathematical Sciences 262, nr 2 (kwiecień 2022): 184–93. http://dx.doi.org/10.1007/s10958-022-05809-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Selivanova, Svetlana. "Metric Geometry of Nonregular Weighted Carnot–Carathéodory Spaces". Journal of Dynamical and Control Systems 20, nr 1 (17.12.2013): 123–48. http://dx.doi.org/10.1007/s10883-013-9206-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nikolov, N. "Continuity and boundary behavior of the Carathéodory metric". Mathematical Notes 67, nr 2 (luty 2000): 183–91. http://dx.doi.org/10.1007/bf02686245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Świątkowski, Jacek. "Compact 3-manifolds with a flat Carnot-Carathéodory metric". Colloquium Mathematicum 63, nr 1 (1992): 89–105. http://dx.doi.org/10.4064/cm-63-1-89-105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Krushkal, Samuel L. "The Grunsky function and Carathéodory metric of Teichmüller spaces". Complex Variables and Elliptic Equations 61, nr 6 (11.01.2016): 803–16. http://dx.doi.org/10.1080/17476933.2015.1131682.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Martinetti, Pierre. "Carnot-Carathéodory Metric and Gauge Fluctuation in Noncommutative Geometry". Communications in Mathematical Physics 265, nr 3 (22.04.2006): 585–616. http://dx.doi.org/10.1007/s00220-006-0001-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Nikolov, Nikolai, Peter Pflug, Pascal J. Thomas i Włodzimierz Zwonek. "Estimates of the Carathéodory metric on the symmetrized polydisc". Journal of Mathematical Analysis and Applications 341, nr 1 (maj 2008): 140–48. http://dx.doi.org/10.1016/j.jmaa.2007.09.072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Arstu i Swadesh Kumar Sahoo. "Carathéodory Density of the Hurwitz Metric on Plane Domains". Bulletin of the Malaysian Mathematical Sciences Society 43, nr 6 (29.04.2020): 4457–67. http://dx.doi.org/10.1007/s40840-020-00937-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Tan, Kang-Hai, i Xiao-Ping Yang. "Characterisation of the sub-Riemannian isometry groups of the H-type groups". Bulletin of the Australian Mathematical Society 70, nr 1 (sierpień 2004): 87–100. http://dx.doi.org/10.1017/s000497270003584x.

Pełny tekst źródła
Streszczenie:
For a H-type group G, we first give explicit equations for its shortest sub-Riemannian geodesics. We use properties of sub-Riemannian geodesics in G to characterise the isometry group ISO(G) with respect to the Carnot-Carathéodory metric. It turns out that ISO(G) coincides with the isometry group with respect to the standard Riemannian metric of G.
Style APA, Harvard, Vancouver, ISO itp.
16

Karmanova, M. B. "Local Metric Properties of Level Surfaces on Carnot–Carathéodory Spaces". Doklady Mathematics 99, nr 1 (styczeń 2019): 75–78. http://dx.doi.org/10.1134/s1064562419010241.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wang, Jianfei. "Schwarz-Pick Estimates for Holomorphic Mappings with Values in Homogeneous Ball". Abstract and Applied Analysis 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/647972.

Pełny tekst źródła
Streszczenie:
LetBXbe the unit ball in a complex Banach spaceX. AssumeBXis homogeneous. The generalization of the Schwarz-Pick estimates of partial derivatives of arbitrary order is established for holomorphic mappings from the unit ballBntoBXassociated with the Carathéodory metric, which extend the corresponding Chen and Liu, Dai et al. results.
Style APA, Harvard, Vancouver, ISO itp.
18

Skrzypczak, Leszek. "Besov Spaces and Hausdorff Dimension For Some Carnot-Carathéodory Metric Spaces". Canadian Journal of Mathematics 54, nr 6 (1.12.2002): 1280–304. http://dx.doi.org/10.4153/cjm-2002-049-x.

Pełny tekst źródła
Streszczenie:
AbstractWe regard a system of left invariant vector fields satisfying the Hörmander condition and the related Carnot-Carathéodory metric on a unimodular Lie group G. We define Besov spaces corresponding to the sub-Laplacian both with positive and negative smoothness. The atomic decomposition of the spaces is given. In consequence we get the distributional characterization of the Hausdorff dimension of Borel subsets with the Haar measure zero.
Style APA, Harvard, Vancouver, ISO itp.
19

Le Donne, Enrico. "A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries". Analysis and Geometry in Metric Spaces 5, nr 1 (4.01.2018): 116–37. http://dx.doi.org/10.1515/agms-2017-0007.

Pełny tekst źródła
Streszczenie:
Abstract Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.
Style APA, Harvard, Vancouver, ISO itp.
20

Abate, Marco, i Roberto Tauraso. "The Lindelöf principle and angular derivatives in convex domains of finite type". Journal of the Australian Mathematical Society 73, nr 2 (październik 2002): 221–50. http://dx.doi.org/10.1017/s1446788700008818.

Pełny tekst źródła
Streszczenie:
AbstractWe describe a generalization of the classical Julia-Wolff-Carathéodory theorem to a large class of bounded convex domains of finite type, including convex circular domains and convex domains with real analytic boundary. The main tools used in the proofs are several explicit estimates on the boundary behaviour of Kobayashi distance and metric, and a new Lindelöf principle.
Style APA, Harvard, Vancouver, ISO itp.
21

Klein, Tom, i Andrew Nicas. "The Horofunction boundary of the Heisenberg Group: The Carnot-Carathéodory metric". Conformal Geometry and Dynamics of the American Mathematical Society 14, nr 15 (17.11.2010): 269. http://dx.doi.org/10.1090/s1088-4173-2010-00217-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

BALOGH, ZOLTÁN M., RETO BERGER, ROBERTO MONTI i JEREMY T. TYSON. "Exceptional sets for self-similar fractals in Carnot groups". Mathematical Proceedings of the Cambridge Philosophical Society 149, nr 1 (24.03.2010): 147–72. http://dx.doi.org/10.1017/s0305004110000083.

Pełny tekst źródła
Streszczenie:
AbstractWe consider self-similar iterated function systems in the sub-Riemannian setting of Carnot groups. We estimate the Hausdorff dimension of the exceptional set of translation parameters for which the Hausdorff dimension in terms of the Carnot–Carathéodory metric is strictly less than the similarity dimension. This extends a recent result of Falconer and Miao from Euclidean space to Carnot groups.
Style APA, Harvard, Vancouver, ISO itp.
23

Karmanova, M. B. "Metric Properties of Graphs on Carnot–Carathéodory Spaces with Sub-Lorentzian Structure". Doklady Mathematics 101, nr 1 (styczeń 2020): 36–39. http://dx.doi.org/10.1134/s1064562420010159.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Gekhtman, Dmitri, i Vladimir Markovic. "Classifying complex geodesics for the Carathéodory metric on low-dimensional Teichmüller spaces". Journal d'Analyse Mathématique 140, nr 2 (marzec 2020): 669–94. http://dx.doi.org/10.1007/s11854-020-0102-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ruszkowski, Bartosch. "Hardy inequalities for the Heisenberg Laplacian on convex bounded polytopes". MATHEMATICA SCANDINAVICA 123, nr 1 (1.08.2018): 101–20. http://dx.doi.org/10.7146/math.scand.a-105218.

Pełny tekst źródła
Streszczenie:
We prove a Hardy-type inequality for the gradient of the Heisenberg Laplacian on open bounded convex polytopes on the first Heisenberg group. The integral weight of the Hardy inequality is given by the distance function to the boundary measured with respect to the Carnot-Carathéodory metric. The constant depends on the number of hyperplanes, given by the boundary of the convex polytope, which are not orthogonal to the hyperplane $x_3=0$.
Style APA, Harvard, Vancouver, ISO itp.
26

Magnani, Valentino. "On a measure-theoretic area formula". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 145, nr 4 (20.07.2015): 885–91. http://dx.doi.org/10.1017/s030821051500013x.

Pełny tekst źródła
Streszczenie:
We review some classical differentiation theorems for measures, showing how they can be turned into an integral representation of a Borel measure with respect to a fixed Carathéodory measure. We focus our attention on the case when this measure is the spherical Hausdorff measure, giving a metric measure area formula. Our aim is to use certain covering derivatives as ‘generalized densities’. Some consequences for the sub-Riemannian Heisenberg group are also pointed out.
Style APA, Harvard, Vancouver, ISO itp.
27

Wang, Huiju, i Pengcheng Niu. "Local boundedness for minimizers of convex integral functionals in metric measure spaces". MATHEMATICA SCANDINAVICA 126, nr 2 (6.05.2020): 259–75. http://dx.doi.org/10.7146/math.scand.a-116244.

Pełny tekst źródła
Streszczenie:
In this paper we consider the convex integral functional $ I := \int _\Omega {\Phi (g_u)\,d\mu } $ in the metric measure space $(X,d,\mu )$, where $X$ is a set, $d$ is a metric, µ is a Borel regular measure satisfying the doubling condition, Ω is a bounded open subset of $X$, $u$ belongs to the Orlicz-Sobolev space $N^{1,\Phi }(\Omega )$, Φ is an N-function satisfying the $\Delta _2$-condition, $g_u$ is the minimal Φ-weak upper gradient of $u$. By improving the corresponding method in the Euclidean space to the metric setting, we establish the local boundedness for minimizers of the convex integral functional under the assumption that $(X,d,\mu )$ satisfies the $(1,1)$-Poincaré inequality. The result of this paper can be applied to the Carnot-Carathéodory space spanned by vector fields satisfying Hörmander's condition.
Style APA, Harvard, Vancouver, ISO itp.
28

KLOEDEN, PETER E., i VICTOR S. KOZYAKIN. "ASYMPTOTIC BEHAVIOUR OF RANDOM MARKOV CHAINS WITH TRIDIAGONAL GENERATORS". Bulletin of the Australian Mathematical Society 87, nr 1 (30.03.2012): 27–36. http://dx.doi.org/10.1017/s0004972712000160.

Pełny tekst źródła
Streszczenie:
AbstractContinuous-time discrete-state random Markov chains generated by a random linear differential equation with a random tridiagonal matrix are shown to have a random attractor consisting of singleton subsets, essentially a random path, in the simplex of probability vectors. The proof uses comparison theorems for Carathéodory random differential equations and the fact that the linear cocycle generated by the Markov chain is a uniformly contractive mapping of the positive cone into itself with respect to the Hilbert projective metric. It does not involve probabilistic properties of the sample path and is thus equally valid in the nonautonomous deterministic context of Markov chains with, say, periodically varying transition probabilities, in which case the attractor is a periodic path.
Style APA, Harvard, Vancouver, ISO itp.
29

Han, Yongsheng, Detlef Müller i Dachun Yang. "A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Carathéodory Spaces". Abstract and Applied Analysis 2008 (2008): 1–250. http://dx.doi.org/10.1155/2008/893409.

Pełny tekst źródła
Streszczenie:
We work on RD-spaces𝒳, namely, spaces of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in𝒳. An important example is the Carnot-Carathéodory space with doubling measure. By constructing an approximation of the identity with bounded support of Coifman type, we develop a theory of Besov and Triebel-Lizorkin spaces on the underlying spaces. In particular, this includes a theory of Hardy spacesHp(𝒳)and local Hardy spaceshp(𝒳)on RD-spaces, which appears to be new in this setting. Among other things, we give frame characterization of these function spaces, study interpolation of such spaces by the real method, and determine their dual spaces whenp≥1. The relations among homogeneous Besov spaces and Triebel-Lizorkin spaces, inhomogeneous Besov spaces and Triebel-Lizorkin spaces, Hardy spaces, and BMO are also presented. Moreover, we prove boundedness results on these Besov and Triebel-Lizorkin spaces for classes of singular integral operators, which include non-isotropic smoothing operators of order zero in the sense of Nagel and Stein that appear in estimates for solutions of the Kohn-Laplacian on certain classes of model domains inℂN. Our theory applies in a wide range of settings.
Style APA, Harvard, Vancouver, ISO itp.
30

Dlugie, Ethan, i Aaron Peterson. "On uniform large-scale volume growth for the Carnot–Carathéodory metric on unbounded model hypersurfaces in ℂ2". Involve, a Journal of Mathematics 11, nr 1 (1.01.2018): 103–18. http://dx.doi.org/10.2140/involve.2018.11.103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Ikonen, Toni. "Quasiconformal Jordan Domains". Analysis and Geometry in Metric Spaces 9, nr 1 (1.01.2021): 167–85. http://dx.doi.org/10.1515/agms-2020-0127.

Pełny tekst źródła
Streszczenie:
Abstract We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY ). We say that a metric space (Y, dY ) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY ) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY ) that is quasiconformal in the geometric sense. We show that ϕ has a continuous, monotone, and surjective extension Φ: 𝔻 ̄ → Y ̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for Φ to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of Φ to 𝕊1 being a quasisymmetry and to ∂Y being bi-Lipschitz equivalent to a quasicircle in the plane.
Style APA, Harvard, Vancouver, ISO itp.
32

Flynn, Joshua, Nguyen Lam i Guozhen Lu. "Sharp Hardy Identities and Inequalities on Carnot Groups". Advanced Nonlinear Studies 21, nr 2 (12.03.2021): 281–302. http://dx.doi.org/10.1515/ans-2021-2123.

Pełny tekst źródła
Streszczenie:
Abstract In this paper we establish general weighted Hardy identities for several subelliptic settings including Hardy identities on the Heisenberg group, Carnot groups with respect to a homogeneous gauge and Carnot–Carathéodory metric, general nilpotent groups, and certain families of Hörmander vector fields. We also introduce new weighted uncertainty principles in these settings. This is done by continuing the program initiated by [N. Lam, G. Lu and L. Zhang, Factorizations and Hardy’s-type identities and inequalities on upper half spaces, Calc. Var. Partial Differential Equations 58 2019, 6, Paper No. 183; N. Lam, G. Lu and L. Zhang, Geometric Hardy’s inequalities with general distance functions, J. Funct. Anal. 279 2020, 8, Article ID 108673] of using the Bessel pairs introduced by [N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications, Math. Surveys Monogr. 187, American Mathematical Society, Providence, 2013] to obtain Hardy identities. Using these identities, we are able to improve significantly existing Hardy inequalities in the literature in the aforementioned subelliptic settings. In particular, we establish the Hardy identities and inequalities in the spirit of [H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 1997, 443–469] and [H. Brezis and M. Marcus, Hardy’s inequalities revisited. Dedicated to Ennio De Giorgi, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 1997, 1–2, 217–237] in these settings.
Style APA, Harvard, Vancouver, ISO itp.
33

Mitchell, John. "On Carnot-Carathéodory metrics". Journal of Differential Geometry 21, nr 1 (1985): 35–45. http://dx.doi.org/10.4310/jdg/1214439462.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Agler, Jim, Zinaida Lykova i N. J. Young. "Intrinsic Directions, Orthogonality, and Distinguished Geodesics in the Symmetrized Bidisc". Journal of Geometric Analysis 31, nr 8 (19.01.2021): 8202–37. http://dx.doi.org/10.1007/s12220-020-00582-0.

Pełny tekst źródła
Streszczenie:
AbstractThe symmetrized bidisc $$\begin{aligned} G {\mathop {=}\limits ^\mathrm{{def}}}\{(z+w,zw):|z|<1,\quad |w|<1\}, \end{aligned}$$ G = def { ( z + w , z w ) : | z | < 1 , | w | < 1 } , under the Carathéodory metric, is a complex Finsler space of cohomogeneity 1 in which the geodesics, both real and complex, enjoy a rich geometry. As a Finsler manifold, G does not admit a natural notion of angle, but we nevertheless show that there is a notion of orthogonality. The complex tangent bundle TG splits naturally into the direct sum of two line bundles, which we call the sharp and flat bundles, and which are geometrically defined and therefore covariant under automorphisms of G. Through every point of G, there is a unique complex geodesic of G in the flat direction, having the form $$\begin{aligned} F^\beta {\mathop {=}\limits ^\mathrm{{def}}}\{(\beta +{\bar{\beta }} z,z)\ : z\in \mathbb {D}\} \end{aligned}$$ F β = def { ( β + β ¯ z , z ) : z ∈ D } for some $$\beta \in \mathbb {D}$$ β ∈ D , and called a flat geodesic. We say that a complex geodesic Dis orthogonal to a flat geodesic F if D meets F at a point $$\lambda $$ λ and the complex tangent space $$T_\lambda D$$ T λ D at $$\lambda $$ λ is in the sharp direction at $$\lambda $$ λ . We prove that a geodesic D has the closest point property with respect to a flat geodesic F if and only if D is orthogonal to F in the above sense. Moreover, G is foliated by the geodesics in G that are orthogonal to a fixed flat geodesic F.
Style APA, Harvard, Vancouver, ISO itp.
35

Ge, Zhong. "Horizontal path spaces and Carnot-Carathéodory metrics". Pacific Journal of Mathematics 161, nr 2 (1.12.1993): 255–86. http://dx.doi.org/10.2140/pjm.1993.161.255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Hamenstädt, Ursula. "Some regularity theorems for Carnot-Carathéodory metrics". Journal of Differential Geometry 32, nr 3 (1990): 819–50. http://dx.doi.org/10.4310/jdg/1214445536.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Mahajan, Prachi. "On isometries of the Kobayashi and Carathéodory metrics". Annales Polonici Mathematici 104, nr 2 (2012): 121–51. http://dx.doi.org/10.4064/ap104-2-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Dontsov, V. V. "Systoles on Heisenberg groups with Carnot-Carathéodory metrics". Sbornik: Mathematics 192, nr 3 (30.04.2001): 347–74. http://dx.doi.org/10.1070/sm2001v192n03abeh000549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Krantz, Steven G. "The Carathéodory and Kobayashi Metrics and Applications in Complex Analysis". American Mathematical Monthly 115, nr 4 (kwiecień 2008): 304–29. http://dx.doi.org/10.1080/00029890.2008.11920531.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Greshnov, A. V. "Metrics and tangent cones of uniformly regular Carnot—Carathéodory spaces". Siberian Mathematical Journal 47, nr 2 (marzec 2006): 209–38. http://dx.doi.org/10.1007/s11202-006-0036-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Mahajan, Prachi, i Kaushal Verma. "Some Aspects of the Kobayashi and Carathéodory Metrics on Pseudoconvex Domains". Journal of Geometric Analysis 22, nr 2 (4.12.2010): 491–560. http://dx.doi.org/10.1007/s12220-010-9206-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Royden, Halsey, Pit-Mann Wong i Steven G. Krantz. "The Carathéodory and Kobayashi/Royden metrics by way of dual extremal problems". Complex Variables and Elliptic Equations 58, nr 9 (wrzesień 2013): 1283–98. http://dx.doi.org/10.1080/17476933.2012.662226.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Peterson, Aaron. "Carnot–Carathéodory metrics in unbounded subdomains of $${{\mathbb{C}}^2}$$ C 2". Archiv der Mathematik 102, nr 5 (maj 2014): 437–47. http://dx.doi.org/10.1007/s00013-014-0646-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Markovic, Vladimir. "Carathéodory’s metrics on Teichmüller spaces and $L$ -shaped pillowcases". Duke Mathematical Journal 167, nr 3 (luty 2018): 497–535. http://dx.doi.org/10.1215/00127094-2017-0041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

FOURNIER, RICHARD, i STEPHAN RUSCHEWEYH. "A generalization of the Schwarz–Carathéodory reflection principle and spaces of pseudo-metrics". Mathematical Proceedings of the Cambridge Philosophical Society 130, nr 2 (marzec 2001): 353–64. http://dx.doi.org/10.1017/s0305004100004941.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Bieske, Thomas, i Luca Capogna. "The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathéodory metrics". Transactions of the American Mathematical Society 357, nr 2 (23.09.2004): 795–823. http://dx.doi.org/10.1090/s0002-9947-04-03601-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Capogna, Luca, i Nicola Garofalo. "Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for carnot-carathéodory metrics". Journal of Fourier Analysis and Applications 4, nr 4-5 (lipiec 1998): 403–32. http://dx.doi.org/10.1007/bf02498217.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Wong, Kwok-Kin, i Sai-Kee Yeung. "Quasi-Projective Manifolds Uniformized by Carathéodory Hyperbolic Manifolds and Hyperbolicity of Their Subvarieties". International Mathematics Research Notices, 27.06.2023. http://dx.doi.org/10.1093/imrn/rnad134.

Pełny tekst źródła
Streszczenie:
Abstract Let $M$ be a Carathéodory hyperbolic complex manifold. We show that $M$ supports a real-analytic bounded strictly plurisubharmonic function. If $M$ is also complete Kähler, we show that $M$ admits the Bergman metric. When $M$ is strongly Carathéodory hyperbolic and is the universal covering of a quasi-projective manifold $X$, the Bergman metric can be estimated in terms of a Poincaré-type metric on $X$. It is also proved that any quasi-projective (resp. projective) subvariety of $X$ is of log-general type (resp. general type), a result consistent with a conjecture of Lang.
Style APA, Harvard, Vancouver, ISO itp.
49

Sarkar, Amar Deep, i Kaushal Verma. "A submultiplicative property of the Carathéodory metric on planar domains". Proceedings - Mathematical Sciences 130, nr 1 (6.06.2020). http://dx.doi.org/10.1007/s12044-020-00565-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Hajłasz, Piotr, i Scott Zimmerman. "Geodesics in the Heisenberg Group". Analysis and Geometry in Metric Spaces 3, nr 1 (29.10.2015). http://dx.doi.org/10.1515/agms-2015-0020.

Pełny tekst źródła
Streszczenie:
Abstract We provide a new and elementary proof for the structure of geodesics in the Heisenberg group Hn. The proof is based on a new isoperimetric inequality for closed curves in R2n.We also prove that the Carnot- Carathéodory metric is real analytic away from the center of the group.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii