Gotowa bibliografia na temat „Carathéodory metric”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Carathéodory metric”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Carathéodory metric"

1

Fornæss, John Erik, i Lina Lee. "Kobayashi, Carathéodory and Sibony metric". Complex Variables and Elliptic Equations 54, nr 3-4 (marzec 2009): 293–301. http://dx.doi.org/10.1080/17476930902760450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Abate, Marco, i Jean-Pierre Vigué. "Isometries for the Carathéodory metric". Proceedings of the American Mathematical Society 136, nr 11 (20.05.2008): 3905–9. http://dx.doi.org/10.1090/s0002-9939-08-09391-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ge, Zhong. "Collapsing Riemannian Metrics to Carnot-Caratheodory Metrics and Laplacians to Sub-Laplacians". Canadian Journal of Mathematics 45, nr 3 (1.06.1993): 537–53. http://dx.doi.org/10.4153/cjm-1993-028-6.

Pełny tekst źródła
Streszczenie:
AbstractWe study the asymptotic behavior of the Laplacian on functions when the underlying Riemannian metric is collapsed to a Carnot-Carathéodory metric. We obtain a uniform short time asymptotics for the trace of the heat kernel in the case when the limit Carnot-Carathéodory metric is almost Heisenberg, the limit of which is the result of Beal-Greiner-Stanton, and Stanton-Tartakoff.
Style APA, Harvard, Vancouver, ISO itp.
4

CONNELL, CHRIS, THANG NGUYEN i RALF SPATZIER. "Carnot metrics, dynamics and local rigidity". Ergodic Theory and Dynamical Systems 42, nr 2 (9.12.2021): 614–64. http://dx.doi.org/10.1017/etds.2021.116.

Pełny tekst źródła
Streszczenie:
AbstractThis paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces.
Style APA, Harvard, Vancouver, ISO itp.
5

Fu, Siqi. "Asymptotic Expansions of Invariant Metrics of Strictly Pseudoconvex Domains". Canadian Mathematical Bulletin 38, nr 2 (1.06.1995): 196–206. http://dx.doi.org/10.4153/cmb-1995-028-9.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper we obtain the asymptotic expansions of the Carathéodory and Kobayashi metrics of strictly pseudoconvex domains with C∞ smooth boundaries in ℂn. The main result of this paper can be stated as following:Main Theorem. Let Ω be a strictly pseudoconvex domain with C∞ smooth boundary. Let FΩ(z,X) be either the Carathéodory or the Kobayashi metric of Ω. Let δ(z) be the signed distance from z to ∂Ω with δ(z) < 0 for z ∊ Ω and δ(z) ≥ 0 for z ∉ Ω. Then there exist a neighborhood U of ∂Ω, a constant C > 0, and a continuous function C(z,X):(U ∩ Ω) × ℂn -> ℝ such that and|C(z,X)| ≤ C|X| for z ∊ U ∩ Ω and X ∊ ℂn
Style APA, Harvard, Vancouver, ISO itp.
6

Krushkal, Samuel. "On the Carathéodory metric of universal Teichmüller space". Ukrainian Mathematical Bulletin 19, nr 1 (28.01.2022): 75–87. http://dx.doi.org/10.37069/1810-3200-2029-19-1-5.

Pełny tekst źródła
Streszczenie:
In contrast to finite dimensional Teichmuller spaces, all non-expanding invariant metrics on the universal Teichmuller space coincide. This important fact found various applications. We give its new, simplified proof based on some deep features of the Grunsky operator, which intrinsically relate to the universal Teichmuller space. This approach also yields a quantitative answer to Ahlfors' question.
Style APA, Harvard, Vancouver, ISO itp.
7

Krushkal, Samuel L. "On the Carathéodory metric of universal Teichmüller space". Journal of Mathematical Sciences 262, nr 2 (kwiecień 2022): 184–93. http://dx.doi.org/10.1007/s10958-022-05809-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Selivanova, Svetlana. "Metric Geometry of Nonregular Weighted Carnot–Carathéodory Spaces". Journal of Dynamical and Control Systems 20, nr 1 (17.12.2013): 123–48. http://dx.doi.org/10.1007/s10883-013-9206-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nikolov, N. "Continuity and boundary behavior of the Carathéodory metric". Mathematical Notes 67, nr 2 (luty 2000): 183–91. http://dx.doi.org/10.1007/bf02686245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Świątkowski, Jacek. "Compact 3-manifolds with a flat Carnot-Carathéodory metric". Colloquium Mathematicum 63, nr 1 (1992): 89–105. http://dx.doi.org/10.4064/cm-63-1-89-105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Carathéodory metric"

1

Don, Sebastiano. "Functions of bounded variation in Carnot-Carathéodory spaces". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3426813.

Pełny tekst źródła
Streszczenie:
We study properties of functions with bounded variation in Carnot-Carathéodory spaces. In Chapter 2 we prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R, we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative. In Chapter 3 we prove a rank-one theorem à la G. Alberti for the derivatives of vector-valued maps with bounded variation in a class of Carnot groups that includes all Heisenberg groups H^n with n ≥ 2. Some important tools for the proof are properties linking the horizontal derivatives of a real-valued function with bounded variation to its subgraph. In Chapter 4 we prove a compactness result for bounded sequences (u_j) of functions with bounded variation in metric spaces (X, d_j) where the space X is fixed, but the metric may vary with j. We also provide an application to Carnot-Carathéodory spaces. The results of Chapter 4 are fundamental for the proofs of some facts of Chapter 2.
Analizziamo alcune proprietà di funzioni a variazione limitata in spazi di Carnot-Carathéodory. Nel Capitolo 2 dimostriamo che esse sono approssimativamente differenziabili quasi ovunque, esaminiamo il loro insieme di discontinuità approssimata e la decomposizione della loro derivata distribuzionale. Assumendo un'ipotesi addizionale sullo spazio, che chiamiamo proprietà R, mostriamo che quasi tutti i punti di discontinuità approssimata sono di salto e studiamo una formula per la parte di salto della derivata. Nel Capitolo 3 dimostriamo un teorema di rango uno à la G. Alberti per la derivata distribuzionale di funzioni vettoriali a variazione limitata in una classe di gruppi di Carnot che contiene tutti i gruppi di Heisenberg H^n con n ≥ 2. Uno strumento chiave nella dimostrazione è costituito da alcune proprietà che legano le derivate orizzontali di una funzione a variazione limitata con il suo sottografico. Nel Capitolo 4 dimostriamo un risultato di compattezza per succesioni (u_j) equi-limitate in spazi metrici (X, d_j) quando lo spazio X è fissato ma la metrica può variare con j. Mostriamo inoltre un'applicazione agli spazi di Carnot-Carathéodory. I risultati del Capitolo 4 sono fondamentali per la dimostrazione di alcuni fatti contenuti nel Capitolo 2.
Style APA, Harvard, Vancouver, ISO itp.
2

Lieder, Marc [Verfasser]. "Das Randverhalten der Kobayashi- und Carathéodory-Metrik auf lineal konvexen Gebieten endlichen Typs / vorgelegt von Marc Lieder". 2005. http://d-nb.info/977948994/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Carathéodory metric"

1

Street, Brian. The Calder´on-Zygmund Theory II: Maximal Hypoellipticity. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691162515.003.0002.

Pełny tekst źródła
Streszczenie:
This chapter remains in the single-parameter case and turns to the case when the metric is a Carnot–Carathéodory (or sub-Riemannian) metric. It defines a class of singular integral operators adapted to this metric. The chapter has two major themes. The first is a more general reprise of the trichotomy described in Chapter 1 (Theorem 2.0.29). The second theme is a generalization of the fact that Euclidean singular integral operators are closely related to elliptic partial differential equations. The chapter also introduces a quantitative version of the classical Frobenius theorem from differential geometry. This “quantitative Frobenius theorem” can be thought of as yielding “scaling maps” which are well adapted to the Carnot–Carathéodory geometry, and is of central use throughout the rest of the monograph.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Carathéodory metric"

1

"II The Carathéodory pseudodistance and the Carathéodory-Reiffen pseudometric". W Invariant Distances and Metrics in Complex Analysis. Berlin, New York: DE GRUYTER, 1993. http://dx.doi.org/10.1515/9783110870312.15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii