Gotowa bibliografia na temat „Capture de CO₂”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Capture de CO₂”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Capture de CO₂"
Green, N. S., C. E. Early, L. K. Beard i K. T. Wilkins. "Multiple captures of fulvous harvest mice (Reithrodontomys fulvescens) and northern pygmy mice (Baiomys taylori): evidence for short-term co-traveling". Canadian Journal of Zoology 90, nr 3 (marzec 2012): 313–19. http://dx.doi.org/10.1139/z11-137.
Pełny tekst źródłaAresta, Michele, Angela Dibenedetto i Antonella Angelini. "The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, nr 1996 (13.08.2013): 20120111. http://dx.doi.org/10.1098/rsta.2012.0111.
Pełny tekst źródłaRoussanaly, Simon, i Rahul Anantharaman. "Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources". Chemical Engineering Journal 327 (listopad 2017): 618–28. http://dx.doi.org/10.1016/j.cej.2017.06.082.
Pełny tekst źródłaSaragih, Harriman Samuel, Togar Simatupang i Yos Sunitiyoso. "From co-discovery to co-capture: co-innovation in themusic business". International Journal of Innovation Science 11, nr 4 (29.11.2019): 600–617. http://dx.doi.org/10.1108/ijis-07-2019-0068.
Pełny tekst źródłaLeverick, Graham, i Betar M. Gallant. "Electrochemical Reduction of Amine-Captured CO2 in Aqueous Solutions". ECS Meeting Abstracts MA2023-01, nr 26 (28.08.2023): 1719. http://dx.doi.org/10.1149/ma2023-01261719mtgabs.
Pełny tekst źródłaRamanan, G., i Gordon R. Freeman. "Electron thermalization distance distribution in liquid carbon monoxide: electron capture". Canadian Journal of Chemistry 66, nr 5 (1.05.1988): 1304–12. http://dx.doi.org/10.1139/v88-212.
Pełny tekst źródłaWang, Tao, Kun Ge, Jun Liu i Meng Xiang Fang. "A Thermodynamic Analysis of the Fuel Synthesis System with CO2 Direct Captured from Atmosphere". Advanced Materials Research 960-961 (czerwiec 2014): 308–15. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.308.
Pełny tekst źródłaChan, Hao Xian Malcolm, Eng Hwa Yap i Jee Hou Ho. "Overview of Axial Compression Technology for Direct Capture of CO2". Advanced Materials Research 744 (sierpień 2013): 392–95. http://dx.doi.org/10.4028/www.scientific.net/amr.744.392.
Pełny tekst źródłaDeng, Liyuan, i Hanne Kvamsdal. "CO 2 capture: Challenges and opportunities". Green Energy & Environment 1, nr 3 (październik 2016): 179. http://dx.doi.org/10.1016/j.gee.2016.12.002.
Pełny tekst źródłaReis Machado, Ana S., i Manuel Nunes da Ponte. "CO 2 capture and electrochemical conversion". Current Opinion in Green and Sustainable Chemistry 11 (czerwiec 2018): 86–90. http://dx.doi.org/10.1016/j.cogsc.2018.05.009.
Pełny tekst źródłaRozprawy doktorskie na temat "Capture de CO₂"
Bala, Shashi. "Novel approaches for CO₂ capture". Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713474.
Pełny tekst źródłaDing, Tao. "Gas hydrates to capture and sequester CO₂". Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-11102004-141404.
Pełny tekst źródłaSuri, Rajat. "CO₂ compression for capture-enabled power systems". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46616.
Pełny tekst źródłaIncludes bibliographical references (leaves 182-185).
The objective of this thesis is to evaluate a new carbon dioxide compression technology - shock compression - applied specifically to capture-enabled power plants. Global warming has increased public interest in carbon capture and sequestration technologies (CCS), but these technologies add significant capital and operating cost at present, which creates a significant barrier to adoption. Carbon dioxide compression technology makes up a high proportion of the additional cost required, making it a focal point for engineering efforts to improve the economic feasibility of carbon capture. To this effect, shock compressors have the potential to reduce both operating and capital costs with supporting compression ratios of up to 10:1, requiring less stages and theoretically allowing for the possibility of heat integration with the rest of the plant, allowing waste heat to be recovered from hot interstage compressed carbon dioxide. This thesis first presents a technical context for carbon dioxide compression by providing an overview of capture technologies to build an understanding of the different options being investigated for efficient removal of carbon dioxide from power plant emissions. It then examines conventional compression technologies, and how they have each evolved over time. Sample engineering calculations are performed to model gas streams processed by these conventional compressors. An analysis of shock compression is carried out by first building a background in compressible flow theory, and then using this as a foundation for understanding shock wave theory, especially oblique shocks. The shock compressor design is carefully analyzed using patent information, and a simulation of the physics of the shock compressor is created using equations from the theory section described earlier.
(cont.) A heat integration analysis is carried out to compare how conventional compressor technologies compare against the new shock compressor in terms of cooling duty and power recovery when integrated with the carbon dioxide capture unit. Both precombustion IGCC using Selexol and post-combustion MEA configurations are considered and compared. Finally an economic analysis is conducted to determine whether shock compression technology should be attractive to investors and plant managers deciding to support it. Key factors such as market, macroeconomic and technical risk are analyzed for investors, whereas a comparison of capital and operating cost is carried out for plant managers. Relevant risks associated with new compression technologies are also analyzed. It is found that there is no significant operating cost benefit to the shock compressor over the conventional compressor, both costing $3,700/hr for an IGCC plant. Power recovery is simply too low to justify the high power requirements in operating a shock compressor with a 10:1 ratio. The technical claims of the shock compressor (such as projected discharge temperature and pressures) seem reasonable after basic modeling, which shows a higher temperature and pressure than claimed by Ramgen.
by Rajat Suri.
S.M.
Lively, Ryan P. "Hollow fiber sorbents for post-combustion CO₂ capture". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43758.
Pełny tekst źródłaOgbuka, Chidi Premie. "Development of solid adsorbent materials for CO₂capture". Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13276/.
Pełny tekst źródłaBollini, Praveen P. "Amine-oxide adsorbents for post-combustion CO₂ capture". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52908.
Pełny tekst źródłaDidas, Stephanie Ann. "Structural properties of aminosilica materials for CO₂ capture". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54020.
Pełny tekst źródłaLi, Jia. "Options for introducing CO₂ capture and capture readiness for coal fired power plants in China". Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6393.
Pełny tekst źródłaDi, Felice Luca, Claire Courson, Katia Gallucci, Nader Jand, Sergio Rapagnà, Pier Ugo Foscolo i Alain Kiennemann. "One-step hydrocarbons steam reforming and CO 2 capture". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-192989.
Pełny tekst źródłaDi, Felice Luca, Claire Courson, Katia Gallucci, Nader Jand, Sergio Rapagnà, Pier Ugo Foscolo i Alain Kiennemann. "One-step hydrocarbons steam reforming and CO 2 capture". Diffusion fundamentals 7 (2007) 3, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14159.
Pełny tekst źródłaKsiążki na temat "Capture de CO₂"
Gielen, Dolf. Prospects for CO₂ capture and storage. Paris, France: OECD/IEA, 2004.
Znajdź pełny tekst źródłaAgency, International Energy, i Organisation for Economic Co-operation and Development., red. Prospects for CO₂ capture and storage. Paris, France: International Energy Agency/Organisation for Rconomic Co-operation and Development, 2004.
Znajdź pełny tekst źródłaGielen, Dolf. Prospects for CO₂ capture and s. Paris, France: OECD/IEA, 2004.
Znajdź pełny tekst źródłaLecomte, Fabrice. CO₂ capture: Technologies to reduce greenhouse gas emissions. Paris, France: Editions Technip, 2010.
Znajdź pełny tekst źródłaAttalla, Moetaz I. Recent advances in post-combustion CO₂ capture chemistry. Washington, DC: American Chemical Society, 2012.
Znajdź pełny tekst źródłaKamel, Bennaceur, Gielen Dolf, Kerr Tom, Tam Cecilia, International Energy Agency i Organisation for Economic Co-operation and Development., red. CO₂ capture and storage: A key carbon abatement option. Paris: OECD/IEA, 2008.
Znajdź pełny tekst źródłaC, Thomas David, i Benson Sally, red. Carb on dioxide capture for storage in deep geologic formations: Results from the COb2s Capture Project. Amsterdam: Elsevier, 2005.
Znajdź pełny tekst źródłaCO₂ capture and storage projects. Luxembourg: Office for Official Publications of the European Communities, 2007.
Znajdź pełny tekst źródłaCarbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO² Capture Project: Vol 1 - Capture and Separation of Carbon Dioxide ... and Verification (Co2 Capture Project). Elsevier Science, 2005.
Znajdź pełny tekst źródła(Editor), David Thomas, i Sally Benson (Editor), red. Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO² Capture Project: Vol 1 - Capture and Separation of Carbon Dioxide ... and Verification (Co2 Capture Project). Elsevier Science, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Capture de CO₂"
Mariyamma, P. N., Song Yan, R. D. Tyagi, Rao Y. Surampalli i Tian C. Zhang. "CO 2 Sequestration and Leakage". W Carbon Capture and Storage, 113–57. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch05.
Pełny tekst źródłaJin, Wenbiao, Guobin Shan, Tian C. Zhang i Rao Y. Surampalli. "CO 2 Scrubbing Processes and Applications". W Carbon Capture and Storage, 239–80. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch09.
Pełny tekst źródłaBaker, Erin, Gregory Nemet i Peter Rasmussen. "Modeling the Costs of Carbon Capture". W Handbook of CO₂ in Power Systems, 349–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27431-2_16.
Pełny tekst źródłaRamakrishnan, Anushuya, Tian C. Zhang i Rao Y. Surampalli. "Monitoring, Verification and Accounting of CO 2 Stored in Deep Geological Formations". W Carbon Capture and Storage, 159–94. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch06.
Pełny tekst źródłaChandel, Munish K., B. R. Gurjar, C. S. P. Ojha i Rao Y. Surampalli. "Modeling and Uncertainty Analysis of Transport and Geological Sequestration of CO 2". W Carbon Capture and Storage, 475–97. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch17.
Pełny tekst źródłaTao, Duan-Jian, i Zhang-Min Li. "Ionic Liquids in CO Capture and Separation". W Encyclopedia of Ionic Liquids, 1–7. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6739-6_140-1.
Pełny tekst źródłaTao, Duan-Jian, i Zhang-Min Li. "Ionic Liquids in CO Capture and Separation". W Encyclopedia of Ionic Liquids, 740–46. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_140.
Pełny tekst źródłaRomeo, Luis M. "CO2 Capture: Integration and Overall System Optimization in Power Applications". W Handbook of CO₂ in Power Systems, 327–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27431-2_15.
Pełny tekst źródłaCoxam, Jean-Yves, i Karine Ballerat-Busserolles. "$$\mathrm{{CO}}_{2}$$ Capture in Industrial Effluents. Calorimetric Studies". W Calorimetry and Thermal Methods in Catalysis, 481–504. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-11954-5_14.
Pełny tekst źródłaJacobs, David Steve, i Anna Bastian. "Bat Echolocation: Adaptations for Prey Detection and Capture". W Predator–Prey Interactions: Co-evolution between Bats and Their Prey, 13–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32492-0_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Capture de CO₂"
Tateno, Tomoyuki, Naoki Ishibashi i Yasushi Kiyoki. "Geographical Mapping and Knowledgebase Indicative Cost Estimation for Direct Air Capture CO2 Utilization". W 2024 International Electronics Symposium (IES), 359–64. IEEE, 2024. http://dx.doi.org/10.1109/ies63037.2024.10665766.
Pełny tekst źródłaCarrillo, E. J., J. Lizcano-Prada, V. Kafaro, D. Rodriguez-Vallejo i A. Uribe-Rodr�guez. "Techno economical assessment of a low-carbon hydrogen production process using residual biomass gasification and carbon capture". W Foundations of Computer-Aided Process Design, 681–90. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.153241.
Pełny tekst źródłaPeng, Lei, Qiang Fu, Musong Lin, Zaikun Wu, Zhihua Xu i Tianrong Zhu. "Research progress of ionic liquids for CO₂ capture". W 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). IEEE, 2022. http://dx.doi.org/10.1109/cieec54735.2022.9846593.
Pełny tekst źródłaSelani, Daniyal, i Ilaria Tiddi. "Knowledge Extraction from Auto-Encoders on Anomaly Detection Tasks Using Co-activation Graphs". W K-CAP '21: Knowledge Capture Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3460210.3493571.
Pełny tekst źródłaGARCIA, C., C. A. HABERT i C. P. BORGES. "CO2 CAPTURE FROM FLUE GAS USING MEMBRANE CONTACTORS". W XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-co.067.
Pełny tekst źródłaXie, Tianyou. "CO2 Capture by Applying Porous Carbon". W 2021 International Conference on Public Art and Human Development ( ICPAHD 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220110.133.
Pełny tekst źródłavan den Brink, Ruud W., Frank A. de Bruijn, L. T. Handoko i Masbah R. T. Siregar. "Materials for Hydrogen Production with Integrated CO[sub 2] Capture". W INTERNATIONAL WORKSHOP ON ADVANCED MATERIAL FOR NEW AND RENEWABLE ENERGY. AIP, 2009. http://dx.doi.org/10.1063/1.3243238.
Pełny tekst źródłaPapoutsakis, Konstantinos, Costas Panagiotakis i Antonis A. Argyros. "Temporal Action Co-Segmentation in 3D Motion Capture Data and Videos". W 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.231.
Pełny tekst źródłaAlkhatib, Ismail, Ahmed Al-Hajaj, Mohammad Abu Zahra i Lourdes Vega. "A Thermodynamic Robust Model to Assess Hybrid Solvents for CO Capture". W Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2020. http://dx.doi.org/10.2118/203020-ms.
Pełny tekst źródłaHosokawa, Toshinori, Kenichiro Misawa, Hiroshi Yamazaki, Masayoshi Yoshimura i Masayuki Arai. "A Low Capture Power Oriented X-Identification-Filling Co-Optimization Method". W 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE, 2020. http://dx.doi.org/10.1109/iolts50870.2020.9159735.
Pełny tekst źródłaRaporty organizacyjne na temat "Capture de CO₂"
Snyder, S. W. Novel CO{sub 2} capture. Final CRADA Report. Office of Scientific and Technical Information (OSTI), listopad 2009. http://dx.doi.org/10.2172/969638.
Pełny tekst źródłaKulkarni, S., D. Hasse, E. Sanders i T. Chaubey. CO{sub 2} Capture by Sub-ambient Membrane Operation. Office of Scientific and Technical Information (OSTI), listopad 2012. http://dx.doi.org/10.2172/1149477.
Pełny tekst źródłaGary T. Rochelle, J.Tim Cullinane, Marcus Hilliard, Eric Chen, Babatunde Oyenekan i Ross Dugas. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), styczeń 2005. http://dx.doi.org/10.2172/837002.
Pełny tekst źródłaToy, Lora, Atish Kataria i Raghubir Gupta. CO₂ Capture Membrane Process for Power Plant Flue Gas. Office of Scientific and Technical Information (OSTI), kwiecień 2012. http://dx.doi.org/10.2172/1062652.
Pełny tekst źródłaBrown, Alfred "Buz", Andrew Awtry i Erik Meuleman. ION Advanced Solvent CO2 Capture Pilot Project. Office of Scientific and Technical Information (OSTI), listopad 2018. http://dx.doi.org/10.2172/1484045.
Pełny tekst źródłaKrishnan, Gopala, Marc Hornbostel, Jianer Bao, Jordi Perez, Anoop Nagar i Angel Sanjurjo. Development of Novel Carbon Sorbents for CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), listopad 2013. http://dx.doi.org/10.2172/1132602.
Pełny tekst źródłaLivengood, C., i R. Doctor. Evaluation of options for CO{sub 2} capture/utilization/disposal. Test accounts, październik 1992. http://dx.doi.org/10.2172/10184057.
Pełny tekst źródłaBrown, Alfred, i Nathan Brown. Novel Solvent System for Post Combustion CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), wrzesień 2013. http://dx.doi.org/10.2172/1155036.
Pełny tekst źródłaChuang, Steven. Metal Monolithic Amine-grafted Zeolite for CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), marzec 2011. http://dx.doi.org/10.2172/1052998.
Pełny tekst źródłaWood, Benjamin, Sarah Genovese, Robert Perry, Irina Spiry, Rachael Farnum, Surinder Sing, Paul Wilson i in. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), grudzień 2013. http://dx.doi.org/10.2172/1131945.
Pełny tekst źródła