Artykuły w czasopismach na temat „Cantilever Flow Sensor”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cantilever Flow Sensor”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Abels, Claudio, Antonio Qualtieri, Toni Lober, Alessandro Mariotti, Lily D. Chambers, Massimo De Vittorio, William M. Megill i Francesco Rizzi. "Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors". Beilstein Journal of Nanotechnology 10 (3.01.2019): 32–46. http://dx.doi.org/10.3762/bjnano.10.4.
Pełny tekst źródłaStauffenberg, Jaqueline, Steve Durstewitz, Martin Hofmann, Tzvetan Ivanov, Mathias Holz, Waleed Ehrhardt, Wolf-Ulrich Riegel, Jens-Peter Zöllner, Eberhard Manske i Ivo Rangelow. "Determination of the mixing ratio of a flowing gas mixture with self-actuated microcantilevers". Journal of Sensors and Sensor Systems 9, nr 1 (27.02.2020): 71–78. http://dx.doi.org/10.5194/jsss-9-71-2020.
Pełny tekst źródłaHetrick, Robert E. "Vibrating cantilever mass flow sensor". Sensors and Actuators A: Physical 21, nr 1-3 (luty 1990): 373–76. http://dx.doi.org/10.1016/0924-4247(90)85074-e.
Pełny tekst źródłaLee, Chia Yen, Yu Hsiang Wang, Tzu Han Hsueh, Rong Hua Ma, Lung Ming Fu i Po Cheng Chou. "A Smart Flow Sensor for Flow Direction Measurement". Advanced Materials Research 47-50 (czerwiec 2008): 189–92. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.189.
Pełny tekst źródłaPommois, Romain, Gaku Furusawa, Takuya Kosuge, Shun Yasunaga, Haruki Hanawa, Hidetoshi Takahashi, Tetsuo Kan i Hisayuki Aoyama. "Micro Water Flow Measurement Using a Temperature-Compensated MEMS Piezoresistive Cantilever". Micromachines 11, nr 7 (30.06.2020): 647. http://dx.doi.org/10.3390/mi11070647.
Pełny tekst źródłaBertke, Maik, Jiushuai Xu, Michael Fahrbach, Andi Setiono, Hutomo Wasisto i Erwin Peiner. "Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection". Sensors 19, nr 4 (21.02.2019): 901. http://dx.doi.org/10.3390/s19040901.
Pełny tekst źródłaGhommem, Mehdi, Victor M. Calo i Christian G. Claudel. "Micro-cantilever flow sensor for small aircraft". Journal of Vibration and Control 21, nr 10 (październik 2013): 2043–58. http://dx.doi.org/10.1177/1077546313505636.
Pełny tekst źródłaZöllner, Jens-Peter, Steve Durstewitz, Jaqueline Stauffenberg, Tzvetan Ivanov, Mathias Holz, Waleed Ehrhardt, W. Ulrich Riegel i Ivo W. Rangelow. "Gas-Flow Sensor Based on Self-Oscillating and Self-Sensing Cantilever". Proceedings 2, nr 13 (3.12.2018): 846. http://dx.doi.org/10.3390/proceedings2130846.
Pełny tekst źródłaAparna, Dr K. Durga, K. L. V. Nagasree i G. Lalitha Devi. "Design and Fabrication of Mems U-Shaped Cantilever". International Journal of Recent Technology and Engineering (IJRTE) 11, nr 6 (30.03.2023): 80–83. http://dx.doi.org/10.35940/ijrte.f7496.0311623.
Pełny tekst źródłaNakashima, Rihachiro, i Hidetoshi Takahashi. "Biaxial Angular Acceleration Sensor with Rotational-Symmetric Spiral Channels and MEMS Piezoresistive Cantilevers". Micromachines 12, nr 5 (30.04.2021): 507. http://dx.doi.org/10.3390/mi12050507.
Pełny tekst źródłaSegawa, Takehiko, Daiki Suzuki, Takayasu Fujino, Timothy Jukes i Takayuki Matsunuma. "Feedback Control of Flow Separation Using Plasma Actuator and FBG Sensor". International Journal of Aerospace Engineering 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/8648919.
Pełny tekst źródłaBertke, Maik, Jiushuai Xu, Michael Fahrbach, Andi Setiono, Gerry Hamdana, Hutomo Suryo Wasisto i Erwin Peiner. "Design of Miniaturized, Self-Out-Readable Cantilever Resonator for Highly Sensitive Airborne Nanoparticle Detection". Proceedings 2, nr 13 (3.12.2018): 879. http://dx.doi.org/10.3390/proceedings2130879.
Pełny tekst źródłaNOMURA, Takehiro, Hiroyuki ABE, Yoshihiro KIKUSHIMA i Masahide MURAKAMI. "Detection of Flow Separation on Aerofoil by FBG Cantilever Sensor". JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 56, nr 653 (2008): 249–55. http://dx.doi.org/10.2322/jjsass.56.249.
Pełny tekst źródłaZhang, Songsong, Liang Lou i Chengkuo Lee. "Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor". Applied Physics Letters 100, nr 2 (9.01.2012): 023111. http://dx.doi.org/10.1063/1.3675878.
Pełny tekst źródłaZhang, Songsong, Liang Lou, Woo-Tae Park i Chengkuo Lee. "Characterization of a silicon nanowire-based cantilever air-flow sensor". Journal of Micromechanics and Microengineering 22, nr 9 (26.07.2012): 095008. http://dx.doi.org/10.1088/0960-1317/22/9/095008.
Pełny tekst źródłaZhao, Ran, Qingjie Yuan, Jianwu Yan i Qanguo Lu. "The Static and Dynamic Sensitivity of Magnetostrictive Bioinspired Whisker Sensor". Journal of Nanotechnology 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/2591080.
Pełny tekst źródłaPark, Byung Kyu, i Joon Sik Lee. "Wireless Telemetry of an Oscillating Flow using Mesoscale Flexible Cantilever Sensor". Transactions of the Korean Society of Mechanical Engineers B 37, nr 5 (1.05.2013): 495–501. http://dx.doi.org/10.3795/ksme-b.2013.37.5.495.
Pełny tekst źródłaNaveen, Harija, Shankar Narasimhan, Boby George i Arun K. Tangirala. "Design and Development of a Low-Cost Cantilever-Based Flow Sensor". IFAC-PapersOnLine 53, nr 1 (2020): 111–16. http://dx.doi.org/10.1016/j.ifacol.2020.06.019.
Pełny tekst źródłaKamat, Amar M., Yutao Pei i Ajay G. P. Kottapalli. "Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Casting". Nanomaterials 9, nr 7 (30.06.2019): 954. http://dx.doi.org/10.3390/nano9070954.
Pełny tekst źródłaSharma, Vandana, S. L. Shimi, Saleem Khan i Sandeep Arya. "Design and Fluid Structure Interaction Analysis of a Micro-Channel as Fluid Sensor". Advanced Engineering Forum 14 (październik 2015): 46–56. http://dx.doi.org/10.4028/www.scientific.net/aef.14.46.
Pełny tekst źródłaBertke, Maik, Ina Kirsch, Erik Uhde i Erwin Peiner. "Ultrafine Aerosol Particle Sizer Based on Piezoresistive Microcantilever Resonators with Integrated Air-Flow Channel". Sensors 21, nr 11 (27.05.2021): 3731. http://dx.doi.org/10.3390/s21113731.
Pełny tekst źródłaBai, Yang, Hana Hughes, Pavel Tofel, Carl Meggs i Tim W. Button. "Fabrication and Characterization of Vibration and Wind Energy Harvesters Using Multilayer Free-Standing Piezoelectric Thick Films". Journal of Microelectronics and Electronic Packaging 12, nr 4 (1.10.2015): 181–88. http://dx.doi.org/10.4071/imaps.483.
Pełny tekst źródłaBai, Yang, Hana Hughes, Pavel Tofel, Carl Meggs i Tim W. Button. "Fabrication and Characterisation of Vibration and Wind Energy Harvesters Using Multi-layer Free-standing Piezoelectric Thick-films". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, CICMT (1.09.2015): 000195–202. http://dx.doi.org/10.4071/cicmt-wa34.
Pełny tekst źródłaQi, Jiali, Chun Shao, Wei Wu i Ruijin Wang. "Investigation on the Effective Measures for Improving the Performance of Calorimetric Microflow Sensor". Sensors 23, nr 17 (25.08.2023): 7413. http://dx.doi.org/10.3390/s23177413.
Pełny tekst źródłaHarija, H., Boby George i Arun K. Tangirala. "A Cantilever-Based Flow Sensor for Domestic and Agricultural Water Supply System". IEEE Sensors Journal 21, nr 23 (1.12.2021): 27147–56. http://dx.doi.org/10.1109/jsen.2021.3121306.
Pełny tekst źródłaBlue, Robert, James G. Brown, Lijie Li, Ralf Bauer i Deepak Uttamchandani. "MEMS Gas Flow Sensor Based on Thermally Induced Cantilever Resonance Frequency Shift". IEEE Sensors Journal 20, nr 8 (15.04.2020): 4139–46. http://dx.doi.org/10.1109/jsen.2020.2964323.
Pełny tekst źródłaQualtieri, A., F. Rizzi, M. T. Todaro, A. Passaseo, R. Cingolani i M. De Vittorio. "Stress-driven AlN cantilever-based flow sensor for fish lateral line system". Microelectronic Engineering 88, nr 8 (sierpień 2011): 2376–78. http://dx.doi.org/10.1016/j.mee.2011.02.091.
Pełny tekst źródłaBučinskas, Vytautas, Andrius Dzedzickis, Ernestas Šutinys i Tadas Lenkutis. "Implementation of Different Gas Influence for Operation of Modified Atomic Force Microscope Sensor". Solid State Phenomena 260 (lipiec 2017): 99–104. http://dx.doi.org/10.4028/www.scientific.net/ssp.260.99.
Pełny tekst źródłaWang, Yu-Hsiang, Chia-Yen Lee i Che-Ming Chiang. "A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure". Sensors 7, nr 10 (17.10.2007): 2389–401. http://dx.doi.org/10.3390/s7102389.
Pełny tekst źródłaSingh, Rahul Kumar, Sun Woh Lye i Jianmin Miao. "PVDF Nanofiber Sensor for Vibration Measurement in a String". Sensors 19, nr 17 (29.08.2019): 3739. http://dx.doi.org/10.3390/s19173739.
Pełny tekst źródłaZhang, Zhuoliang, Chao Zhou, Zhiqiang Cao, Min Tan, Long Cheng, Sai Deng i Junfeng Fan. "A speed measurement method for underwater robots using an artificial lateral line sensor". Smart Materials and Structures 31, nr 1 (22.11.2021): 015011. http://dx.doi.org/10.1088/1361-665x/ac358e.
Pełny tekst źródłaWang, Peng, Yujun Yang, Manlong Chen, Changming Zhang, Nan Wang, Fan Yang, Chunlei Peng, Jike Han i Yuqiang Dai. "Design of a Biaxial High-G Piezoresistive Accelerometer with a Tension–Compression Structure". Micromachines 14, nr 8 (25.07.2023): 1492. http://dx.doi.org/10.3390/mi14081492.
Pełny tekst źródłaChadwick, K. M., D. J. DeTurris i J. A. Schetz. "Direct Measurements of Skin Friction in Supersonic Combustion Flow Fields". Journal of Engineering for Gas Turbines and Power 115, nr 3 (1.07.1993): 507–14. http://dx.doi.org/10.1115/1.2906737.
Pełny tekst źródłaChen, Pei, Yulong Zhao, Bian Tian i Yiyao Li. "Design and fluid–structure interaction analysis of a micromachined cantilever‐based differential pressure flow sensor". Micro & Nano Letters 9, nr 10 (październik 2014): 650–54. http://dx.doi.org/10.1049/mnl.2014.0245.
Pełny tekst źródłaSadegh Cheri, Mohammad, Hamid Latifi, Jalal Sadeghi, Mohammadreza Salehi Moghaddam, Hamidreza Shahraki i Hasan Hajghassem. "Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor". Analyst 139, nr 2 (2014): 431–38. http://dx.doi.org/10.1039/c3an01588b.
Pełny tekst źródłaLiew Hui Fang, Rosemizi Abd Rahim, Muhammad Izuan Fahmi i Vmalen Kupusamy. "Modelling and Characterization Piezoelectric Transducer for Sound Wave Energy Harvesting". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 102, nr 2 (27.02.2023): 81–98. http://dx.doi.org/10.37934/arfmts.102.2.8198.
Pełny tekst źródłaTrigona, Carlo, Salvatore Cerruto, Salvatore Graziani, Giovanna Di Pasquale i Antonino Pollicino. "Towards Environmentally Friendly Accelerometers Based on Bacterial Cellulose". Applied Sciences 11, nr 17 (27.08.2021): 7903. http://dx.doi.org/10.3390/app11177903.
Pełny tekst źródłaBian, Yixiang, Rongrong Liu i Shen Hui. "Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor". Functional Materials Letters 09, nr 01 (luty 2016): 1650001. http://dx.doi.org/10.1142/s1793604716500016.
Pełny tekst źródłaGoeckeritz, Jeremy, Gary Aden i Ami Chand. "Nanometer Thermal Conductivity Mapping Using Laser-based Scanning Thermal Microscopy". MRS Proceedings 1754 (2015): 81–86. http://dx.doi.org/10.1557/opl.2015.256.
Pełny tekst źródłaKhan, Umar, Adnan, Naveed Ahmed, Syed Tauseef Mohyud-Din, Yu-Ming Chu, Ilyas Khan i Kottakkaran Sooppy Nisar. "γ-Nanofluid Thermal Transport between Parallel Plates Suspended by Micro-Cantilever Sensor by Incorporating the Effective Prandtl Model: Applications to Biological and Medical Sciences". Molecules 25, nr 8 (13.04.2020): 1777. http://dx.doi.org/10.3390/molecules25081777.
Pełny tekst źródłaLiu, Min, Hui Xia i Guoqiang Liu. "Experimental and numerical study of underwater piezoelectric generator based on Vortex-induced Vibration". Engineering Research Express 3, nr 4 (1.12.2021): 045056. http://dx.doi.org/10.1088/2631-8695/ac33f0.
Pełny tekst źródłaSADER, JOHN E., THOMAS P. BURG i SCOTT R. MANALIS. "Energy dissipation in microfluidic beam resonators". Journal of Fluid Mechanics 650 (22.03.2010): 215–50. http://dx.doi.org/10.1017/s0022112009993521.
Pełny tekst źródłaJUNG, MI-YOUNG, S. S. CHOI, C. J. KANG i Y. KUK. "FABRICATION OF BIMETALLIC CANTILEVERS AND ITS CHARACTERIZATION". Surface Review and Letters 06, nr 06 (grudzień 1999): 1195–99. http://dx.doi.org/10.1142/s0218625x99001335.
Pełny tekst źródłaSheleg, V. K., Ma Min i M. A. Belotserkovsky. "Production Technology and Damping Properties of Aerated Polymer Coatings". Science & Technique 20, nr 5 (7.10.2021): 375–82. http://dx.doi.org/10.21122/2227-1031-2021-20-5-375-382.
Pełny tekst źródłaRasani, Mohammad Rasidi, Ji Yuan Tu i Nik Abdullah Nik Mohamed. "Numerical Investigation of Flow-Induced Vibration of a Cantilever Beam for a Piezoelectric Energy Harvester". Applied Mechanics and Materials 225 (listopad 2012): 97–102. http://dx.doi.org/10.4028/www.scientific.net/amm.225.97.
Pełny tekst źródłaGurumurthy, C. K., J. Jiao, L. G. Norris, C. Y. Hui i E. J. Kramer. "A Thermo-Mechanical Approach for Fatigue Testing of Polymer Bimaterial Interfaces". Journal of Electronic Packaging 120, nr 4 (1.12.1998): 372–78. http://dx.doi.org/10.1115/1.2792649.
Pełny tekst źródłaJeong, Cheol-Su, Gunwoo Kim, Inwon Lee i Sangrok Jin. "Empirical Modeling of 2-Degree-of-Freedom Azimuth Underwater Thruster Using a Signal Compression Method". Applied Sciences 11, nr 8 (14.04.2021): 3517. http://dx.doi.org/10.3390/app11083517.
Pełny tekst źródłaBai, Jie, Pingjuan Niu, Shinan Cao i Qiang Liu. "The Adhesive Force Measurement between Single μLED and Substrate Based on Atomic Force Microscope". Applied Sciences 12, nr 19 (21.09.2022): 9480. http://dx.doi.org/10.3390/app12199480.
Pełny tekst źródłaZelinger, Z., P. Janda, J. Suchánek, M. Dostál, P. Kubát, V. Nevrlý, P. Bitala i S. Civiš. "Silicon micro-levers and a multilayer graphene membrane studied via laser photoacoustic detection". Journal of Sensors and Sensor Systems 4, nr 1 (5.03.2015): 103–9. http://dx.doi.org/10.5194/jsss-4-103-2015.
Pełny tekst źródłaYang, Yongming, Chunfeng Yu, Yuanchao Wang, Nan Hua i Haipeng Kuang. "Imaging Attitude Control and Image Motion Compensation Residual Analysis Based on a Three-Axis Inertially Stabilized Platform". Applied Sciences 11, nr 13 (24.06.2021): 5856. http://dx.doi.org/10.3390/app11135856.
Pełny tekst źródła