Gotowa bibliografia na temat „Cancer Cell Imaging”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cancer Cell Imaging”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cancer Cell Imaging"
Ray, L. Bryan. "Imaging cancer cell by cell". Science 372, nr 6543 (13.05.2021): 699.1–699. http://dx.doi.org/10.1126/science.372.6543.699-a.
Pełny tekst źródłaRoy, Catherine, Xavier Buy i Sofiane el Ghali. "Imaging in Renal Cell Cancer". EAU Update Series 1, nr 4 (grudzień 2003): 209–14. http://dx.doi.org/10.1016/s1570-9124(03)00058-8.
Pełny tekst źródłaPonomarev, V. "Nuclear Imaging of Cancer Cell Therapies". Journal of Nuclear Medicine 50, nr 7 (12.06.2009): 1013–16. http://dx.doi.org/10.2967/jnumed.109.064055.
Pełny tekst źródłaHeidenreich, Axel, i Vincent Ravery. "Preoperative imaging in renal cell cancer". World Journal of Urology 22, nr 5 (30.07.2004): 307–15. http://dx.doi.org/10.1007/s00345-004-0411-2.
Pełny tekst źródłaIrshad, Abid, i James G. Ravenel. "Imaging of small-cell lung cancer". Current Problems in Diagnostic Radiology 33, nr 5 (wrzesień 2004): 200–211. http://dx.doi.org/10.1067/j.cpradiol.2004.06.003.
Pełny tekst źródłaPINNER, S., i E. SAHAI. "Imaging amoeboid cancer cell motilityin vivo". Journal of Microscopy 231, nr 3 (wrzesień 2008): 441–45. http://dx.doi.org/10.1111/j.1365-2818.2008.02056.x.
Pełny tekst źródłaMidde, Krishna, Nina Sun, Cristina Rohena, Linda Joosen, Harsharan Dhillon i Pradipta Ghosh. "Single-Cell Imaging of Metastatic Potential of Cancer Cells". iScience 10 (grudzień 2018): 53–65. http://dx.doi.org/10.1016/j.isci.2018.11.022.
Pełny tekst źródłaYano, Shuya, i Robert Hoffman. "Real-Time Determination of the Cell-Cycle Position of Individual Cells within Live Tumors Using FUCCI Cell-Cycle Imaging". Cells 7, nr 10 (14.10.2018): 168. http://dx.doi.org/10.3390/cells7100168.
Pełny tekst źródłaA. Rabinovich, Brian, i Caius G. Radu. "Imaging Adoptive Cell Transfer Based Cancer Immunotherapy". Current Pharmaceutical Biotechnology 11, nr 6 (1.09.2010): 672–84. http://dx.doi.org/10.2174/138920110792246528.
Pełny tekst źródłaLiu, Gang, Magdalena Swierczewska, Gang Niu, Xiaoming Zhang i Xiaoyuan Chen. "Molecular imaging of cell-based cancer immunotherapy". Molecular BioSystems 7, nr 4 (2011): 993. http://dx.doi.org/10.1039/c0mb00198h.
Pełny tekst źródłaRozprawy doktorskie na temat "Cancer Cell Imaging"
Kosmacek, Elizabeth Anne Ianzini Fiorenza Mackey Michael A. "Live cell imaging technology development for cancer research". [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/388.
Pełny tekst źródłaKosmacek, Elizabeth Anne. "Live cell imaging technology development for cancer research". Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/388.
Pełny tekst źródłaAgrawal, Vishesh. "Quantitative Imaging Analysis of Non-Small Cell Lung Cancer". Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:27007763.
Pełny tekst źródłaKharin, Alexander. "Group IV nanoparticles for cell imaging and therapy". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1032/document.
Pełny tekst źródłaBiomedicine and biophotonics related businesses are currently growing at a breathtaking pace, thereby comprising one of the fastest growing sectors of innovative economy. This sector is truly interdisciplinary, including, very prominently, the development of novel nanomaterials, light sources, or novel device/equipment concepts to carry out photon conversion or interaction. The great importance of disease diagnosis at a very early stage and of the individual treatment of patients requires a carefully targeted therapy and the ability to induce cell death selectively in diseased cells. Despite the tremendous progress achieved by using quantum dots or organic molecules for bio-imaging and drug delivery, some problems still remain to be solved: increased selectivity for tumor accumulation, and enhancement of treatment efficiency. Other potential problems include cyto- and genotoxicity, slow clearance and low chemical stability. Significant expectations are now related to novel classes of inorganic materials, such as silicon-based or carbon-based nanoparticles, which could exhibit more stable and promising characteristics for both medical diagnostics and therapy. For this reason, new labeling and drug delivery agents for medical application is an important field of research with strongly-growing potential.The 5 types of group IV nanoparticles had been synthesized by various methods. First one is the porous silicon, produced by the electrochemical etching of bulk silicon wafer. That well-known technique gives the material with remarkably bright photoluminescence and the complicated porous structure. The porous silicon particles are the agglomerates of the small silicon crystallites with 3nm size. Second type is 20 nm crystalline silicon particles, produced by the laser ablation of the bulk silicon in water. Those particles have lack of PL under UV excitation, but they can luminesce under 2photon excitation conditions. 3rd type of the particles is the 8 nm nanodiamonds
PHADNGAM, SURATCHANEE. "In Cell Imaging Techniques to Monitor Glucose Uptake, Cell Migration, and Vesicular Traffic: A Functional Study in Cancer Cells". Doctoral thesis, Università del Piemonte Orientale, 2016. http://hdl.handle.net/11579/115172.
Pełny tekst źródłaMickler, Frauke Martina. "Live-cell imaging elucidates cellular interactions of gene nanocarriers for cancer therapy". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-165829.
Pełny tekst źródłaYouniss, Fatma. "MULTI – MODALITY MOLECULAR IMAGING OF ADOPTIVE IMMUNE CELL THERAPY IN BREAST CANCER". VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3323.
Pełny tekst źródłaSoldà, Alice <1986>. "Electrochemical imaging of living cell metabolism: investigation on Warburg effect in cancer". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/7072/1/Solda_Alice_tesi.pdf.
Pełny tekst źródłaSoldà, Alice <1986>. "Electrochemical imaging of living cell metabolism: investigation on Warburg effect in cancer". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/7072/.
Pełny tekst źródłaRonteix, Gustave. "Inferring cell-cell interactions from quantitative analysis of microscopy images". Thesis, Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAX111.
Pełny tekst źródłaIn his prescient article “More is different”, P. W. Anderson counters the reductionist argument by highlighting the crucial role of emergent properties in science. This is particularly true in biology, where complex macroscopic behaviours stem from communication and interaction loops between much simpler elements. As an illustration, I hereby present three different instances in which I developed and used quantitative methods in order to learn new biological processes.For instance, the regulation and eventual rejection of tumours by the immune system is the result of multiple positive and negative regulation networks, influencing both the behaviour of the cancerous and immune cells. To mimic these complex effects in-vitro, I designed a microfluidic assay to challenge melanoma tumour spheroids with multiple T cells and observe the resulting interactions with high spatiotemporal resolution over long (>24h) periods of time. Using advanced image analysis combined with mathematical modelling I demonstrate that a positive feedback loop drives T cell accumulation to the tumour site, leading to enhanced spheroid fragmentation. This study sheds light on the initiation if the immune response at the single cell scale: showing that even the very first contact between T cell and tumour spheroid increases the probability of the next T cell to come to the tumour. It also shows that it is possible to recapitulate complex antagonistic behaviours in-vitro, which paves the way for the elaboration of more sophisticated protocols, involving for example a more complex tumour micro-environment.Many biological processes are the result of complex interactions between cell types, particularly so during development. The foetal liver is the locus of the maturation and expansion of the hematopoietic system, yet little is known about its structure and organisation. New experimental protocols have been recently developed to image this organ and I developed tools to interpret and quantify these data, enabling the construction of a “network twin” of each foetal liver. This method makes it possible to combine the single-cell scale and the organ scale in the analysis, revealing the accumulation of myeloid cells around the blood vessels irrigating the foetal liver at the final stages of organ development. In the future, this technique will make it possible to analyse precisely the environmental niches of cell types of interest in a quantitative manner. This in turn could help us understand the developmental steps of crucial cell types such as hematopoietic stem cells.The interactions between bacteria and their environment is key to understanding the emergence of complex collective behaviours such a biofilm formation. One mechanism of interest is that of rheotaxis, whereby bacterial motion is driven by gradients in the shear stress of the fluid the cells are moving in. I developed a framework to calculate the semi-analytical equations guiding bacteria movement in shear stress. These equations predict behaviours that aren’t observed experimentally, but the discrepancy is solved once rotational diffusion is taken into account. Experimental results are well-fitted by the theoretical prediction: bacteria in droplets segregate asymmetrically when a shear is generated in the media.Although relating to very different topics, these three studies highlight the pertinence of quantitative approaches for understanding complex biological phenomena: biological systems are more than the sum of their constituents.a
Książki na temat "Cancer Cell Imaging"
1962-, Hermans R., red. Squamous cell cancer of the neck. Cambridge: Cambridge University Press, 2008.
Znajdź pełny tekst źródłaGupta, Anubha, i Ritu Gupta, red. ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0798-4.
Pełny tekst źródła1948-, Rankin Sheila, red. Carcinoma of the esophagus. New York: Cambridge University Press, 2008.
Znajdź pełny tekst źródła1943-, Ford Richard J., Maizel Abby L i M.D. Anderson Hospital and Tumor Institute., red. Mediators in cell growth and differentiation. New York: Published for the University of Texas M.D. Anderson Hospital and Tumor Institute at Houston, Houston, Tex., by Raven Press, 1985.
Znajdź pełny tekst źródła1940-, Hayat M. A., red. Lung and breast carcinomas. Amsterdam: Elsevier, Academic Press, 2008.
Znajdź pełny tekst źródłaNational Cancer Institute (U.S.). Network for Translational Research (NTR): Optical imaging in multimodal platforms (U54) : imaging from the cellular to organ level. Washington, D.C.]: U.S. Dept. of Health and Human Services, National Institutes of Health, National Cancer Institute, 2011.
Znajdź pełny tekst źródłaNational Cancer Institute (U.S.). Network for Translational Research (NTR): Optical imaging in multimodal platforms (U54). [Washington, D.C.]: U.S. Dept. of Health and Human Services, National Institutes of Health, National Cancer Institute, 2009.
Znajdź pełny tekst źródłaIn vivo cellular imaging using fluorescent proteins: Methods and protocols. New York: Humana Press, 2012.
Znajdź pełny tekst źródłaW, Berger, red. Metabolic control in diabetes mellitus ; Beta adrenoceptor blocking drugs ; NMR analysis of cancer cells ; Immunoassay in the clinical laboratory ; Cyclosporine. Berlin: Springer-Verlag, 1986.
Znajdź pełny tekst źródłaHermans, R. Squamous Cell Cancer of the Neck. Cambridge University Press, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Cancer Cell Imaging"
Martin, Francis L. "Stem Cell Imaging". W Encyclopedia of Cancer, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7163-3.
Pełny tekst źródłaCarloni, Vinicio. "Live Cell Imaging". W Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7167-4.
Pełny tekst źródłaMartin, Francis L. "Stem Cell Imaging". W Encyclopedia of Cancer, 4331–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-46875-3_7163.
Pełny tekst źródłaCarloni, Vinicio. "Live Cell Imaging". W Encyclopedia of Cancer, 2528–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_7167.
Pełny tekst źródłaRavenel, James G. "Small Cell Carcinoma". W Lung Cancer Imaging, 79–88. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-60761-620-7_7.
Pełny tekst źródłaCosta, Angela Margarida, i Maria José Oliveira. "Cancer cell invadopodia". W Fluorescence Imaging and Biological Quantification, 299–315. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315121017-16.
Pełny tekst źródłaCosta, Angela, i Maria Oliveira. "Cancer cell invadopodia". W Fluorescence Imaging and Biological Quantification, 299–315. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315121017-19.
Pełny tekst źródłaYaddanapudi, Kavitha. "Non-small Cell Lung Cancer". W PET/MR Imaging, 81–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65106-4_35.
Pełny tekst źródłaMatthews, Robert, i Rajesh Gupta. "Invasive Small Cell Bladder Cancer". W PET/MR Imaging, 207–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65106-4_90.
Pełny tekst źródłaYu, Jian Q., i Yamin Dou. "Molecular Imaging for Renal Cell Carcinoma". W Renal Cancer, 99–118. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24378-4_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Cancer Cell Imaging"
Hosseini, Poorya, Sabia Z. Abidi, Gregory J. Kato, Ming Dao, Zahid Yaqoob i Peter T. C. So. "Biophysical markers of Sickle Cell Disease at Individual Cell Level". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jtu3a.44.
Pełny tekst źródłaSaklayen, Nabiha, Marinna Madrid, Marinus Huber, Bi Hai, Alexander Raun, Daryl I. Vulis, Valeria Nuzzo i Eric Mazur. "Plasmonic Intracellular Delivery for Cell Therapy". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth2a.3.
Pełny tekst źródłaWeilguni, Michael, Walter Smetana, Michael Edetsberger i Gottfried Kohler. "Bladder cancer cell imaging system". W 2009 32nd International Spring Seminar on Electronics Technology (ISSE). IEEE, 2009. http://dx.doi.org/10.1109/isse.2009.5206970.
Pełny tekst źródłaAlhallak, Kinan, Lisa Rebello i Narasimhan Rajaram. "Optical Imaging of Cancer Cell Metabolism in Murine Metastatic Breast Cancer". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.34.
Pełny tekst źródłaZhang, Chi, Soumik Siddhanta, Chao Zheng i Ishan Barman. "Probing nanoscopic cell surface areas for rapid and labelfree plasmon enhanced Raman detection". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.53.
Pełny tekst źródłaBerzins, Juris, Talivaldis Freivalds, I. Springis i Ilgar Zitare. "Computer modeling of lung-cancer cell populations: light microscopic cell nucleus structure image analysis". W Medical Imaging 1993, redaktor R. Gilbert Jost. SPIE, 1993. http://dx.doi.org/10.1117/12.152921.
Pełny tekst źródłaMathieu, Evelien, Pol Van Dorpe, Tim Stakenborg, Chengxun Liu i Liesbet Lagae. "Confocal Raman imaging for cancer cell classification". W SPIE Photonics Europe, redaktorzy Jürgen Popp, Valery V. Tuchin, Dennis L. Matthews, Francesco S. Pavone i Paul Garside. SPIE, 2014. http://dx.doi.org/10.1117/12.2052340.
Pełny tekst źródłaMarvdashti, Tahereh, Lian Duan, Sumaira Z. Aasi, Jean Y. Tang i Audrey K. Ellerbee Bowden. "Machine-learning detection of basal cell carcinoma in human skin using polarization sensitive optical coherence tomography". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm4a.5.
Pełny tekst źródłaXu, Xiaochun, Lagnojita Sinha, Jialing Xiang i Kenneth M. Tichauer. "Quantification of cell surface receptor in live tissue culture using a paired-agent stain and rinse approach". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.52.
Pełny tekst źródłaXing, Fuyong, i Lin Yang. "Robust cell segmentation for non-small cell lung cancer". W 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556493.
Pełny tekst źródłaRaporty organizacyjne na temat "Cancer Cell Imaging"
Balatoni, Julius A. New Positron-Emitting Probe for Imaging Cell Proliferation in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2005. http://dx.doi.org/10.21236/ada446271.
Pełny tekst źródłaDrescher, Charles. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2012. http://dx.doi.org/10.21236/ada567976.
Pełny tekst źródłaDrescher, Charles W. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2013. http://dx.doi.org/10.21236/ada591911.
Pełny tekst źródłaDrescher, Charles W. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2011. http://dx.doi.org/10.21236/ada553529.
Pełny tekst źródłaDeng, Chun, Zhenyu Zhang, Zhi Guo, Hengduo Qi, Yang Liu, Haimin Xiao i Xiaojun Li. Assessment of intraoperative use of indocyanine green fluorescence imaging on the number of lymph node dissection during minimally invasive gastrectomy: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, listopad 2021. http://dx.doi.org/10.37766/inplasy2021.11.0062.
Pełny tekst źródłaAlavi, Abass. PET-FDG Imaging in Metastatic Breast Cancer Treated with High Dose Chemotherapy and Stem Cell Support. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1996. http://dx.doi.org/10.21236/ada319987.
Pełny tekst źródłaVenedicto, Melissa, i Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, październik 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Pełny tekst źródłaTsourkas, Andrew. Magnetic Nanoparticle-Based Imaging of RNA Transcripts in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2008. http://dx.doi.org/10.21236/ada487360.
Pełny tekst źródłaTsourkas, Andrew. Magnetic Nanoparticle-Based Imaging of RNA Transcripts in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2009. http://dx.doi.org/10.21236/ada537361.
Pełny tekst źródłaSharp, Zelton D. Quantifying ER Function Using High-Throughput Imaging in Breast and Other Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada502583.
Pełny tekst źródła