Artykuły w czasopismach na temat „CALPHAD modeling”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: CALPHAD modeling.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CALPHAD modeling”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

He, Yan-Lin, Xiao-Gang Lu, Na-Qiong Zhu i Bo Sundman. "CALPHAD modeling of molar volume". Chinese Science Bulletin 59, nr 15 (11.03.2014): 1646–51. http://dx.doi.org/10.1007/s11434-014-0218-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Söderlind, Per, Alexander Landa, Emily E. Moore, Aurélien Perron, John Roehling i Joseph T. McKeown. "High-Temperature Thermodynamics of Uranium from Ab Initio Modeling". Applied Sciences 13, nr 4 (7.02.2023): 2123. http://dx.doi.org/10.3390/app13042123.

Pełny tekst źródła
Streszczenie:
We present high-temperature thermodynamic properties for uranium in its γ phase (γ-U) from first-principles, relativistic, and anharmonic theory. The results are compared to CALPHAD modeling. The ab initio electronic structure is obtained from density-functional theory (DFT) that includes spin–orbit coupling and an added self-consistent orbital-polarization (OP) mechanism for more accurate treatment of magnetism. The first-principles method is coupled to a lattice dynamics scheme that is used to model anharmonic lattice vibrations, namely, Self-Consistent Ab Initio Lattice Dynamics (SCAILD). The methodology can be summarized in the acronym DFT + OP + SCAILD. Upon thermal expansion, γ-U develops non-negligible magnetic moments that are included for the first time in thermodynamic theory. The all-electron DFT approach is shown to model γ-U better than the commonly used pseudopotential method. In addition to CALPHAD, DFT + OP + SCAILD thermodynamic properties are compared with other ab initio and semiempirical modeling and experiments. Our first-principles approach produces Gibbs free energy that is essentially identical to CALPHAD. The DFT + OP + SCAILD heat capacity is close to CALPHAD and most experimental data and is predicted to have a significant thermal dependence due to the electronic contribution.
Style APA, Harvard, Vancouver, ISO itp.
3

Honarmandi, Pejman, Noah H. Paulson, Raymundo Arróyave i Marius Stan. "Uncertainty quantification and propagation in CALPHAD modeling". Modelling and Simulation in Materials Science and Engineering 27, nr 3 (18.03.2019): 034003. http://dx.doi.org/10.1088/1361-651x/ab08c3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sulzer, Sabin, Magnus Hasselqvist, Hideyuki Murakami, Paul Bagot, Michael Moody i Roger Reed. "The Effects of Chemistry Variations in New Nickel-Based Superalloys for Industrial Gas Turbine Applications". Metallurgical and Materials Transactions A 51, nr 9 (22.06.2020): 4902–21. http://dx.doi.org/10.1007/s11661-020-05845-7.

Pełny tekst źródła
Streszczenie:
Abstract Industrial gas turbines (IGT) require novel single-crystal superalloys with demonstrably superior corrosion resistance to those used for aerospace applications and thus higher Cr contents. Multi-scale modeling approaches are aiding in the design of new alloy grades; however, the CALPHAD databases on which these rely remain unproven in this composition regime. A set of trial nickel-based superalloys for IGT blades is investigated, with carefully designed chemistries which isolate the influence of individual additions. Results from an extensive experimental characterization campaign are compared with CALPHAD predictions. Insights gained from this study are used to derive guidelines for optimized gas turbine alloy design and to gauge the reliability of the CALPHAD databases.
Style APA, Harvard, Vancouver, ISO itp.
5

Chen, Ming, Bengt Hallstedt i Ludwig J. Gauckler. "CALPHAD modeling of the La2O3–Y 2O3 system". Calphad 29, nr 2 (czerwiec 2005): 103–13. http://dx.doi.org/10.1016/j.calphad.2005.06.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Steinbach, I., B. Böttger, J. Eiken, N. Warnken i S. G. Fries. "CALPHAD and Phase-Field Modeling: A Successful Liaison". Journal of Phase Equilibria and Diffusion 28, nr 1 (28.04.2007): 101–6. http://dx.doi.org/10.1007/s11669-006-9009-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Liu, Zi-Kui. "First-Principles Calculations and CALPHAD Modeling of Thermodynamics". Journal of Phase Equilibria and Diffusion 30, nr 5 (3.09.2009): 517–34. http://dx.doi.org/10.1007/s11669-009-9570-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Joubert, J. M. "CALPHAD Modeling of Metal–Hydrogen Systems: A Review". JOM 64, nr 12 (11.10.2012): 1438–47. http://dx.doi.org/10.1007/s11837-012-0462-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sundman, Bo, Qing Chen i Yong Du. "A Review of Calphad Modeling of Ordered Phases". Journal of Phase Equilibria and Diffusion 39, nr 5 (20.08.2018): 678–93. http://dx.doi.org/10.1007/s11669-018-0671-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Luo, Chunhui, Karin Hansson, Zhili Song, Debbie Ågren, Ewa Sjöqvist Persson, Fredrik Cederholm i Changji Xuan. "Modelling Microstructure in Casting of Steel via CALPHAD-Based ICME Approach". Alloys 2, nr 4 (28.11.2023): 321–43. http://dx.doi.org/10.3390/alloys2040021.

Pełny tekst źródła
Streszczenie:
Integrated computational materials engineering (ICME) is emerging as an increasingly powerful approach to integrate computational materials science tools into a holistic system and address the multiscale modeling challenges in the processing of advanced steels. This work aims at incorporating macroscopic model (finite element-based thermal model) and microscopic model (CALPHAD-based microstructure model), building an industry-oriented computational tool (MICAST) for casting of steels. Two case studies were performed for solidification simulations of tool steel and stainless steel by using the CALPHAD approach (Thermo-Calc package and CALPHAD database). The predicted microsegregation results agree with the measured ones. In addition, two case studies were performed for continuous casting and ingot casting with selected steel grades, mold geometries and process conditions. The temperature distributions and histories in continuous casting and ingot casting process of steels were calculated using in-house finite-element code which is integrated in MICAST. The predicted temperature history from the casting process simulation was exported as input data for the DICTRA simulation of solidification. The resulting microsegregation by the DICTRA simulation can reflect the microstructure evolution in the real casting process. Current computational practice demonstrates that CALPHAD-based material models can be directly linked with casting process models to predict location-specific microstructures for smart material processing.
Style APA, Harvard, Vancouver, ISO itp.
11

Joubert, Jean-Marc, i Jean-Claude Crivello. "Non-Stoichiometry and Calphad Modeling of Frank-Kasper Phases". Applied Sciences 2, nr 3 (10.09.2012): 669–81. http://dx.doi.org/10.3390/app2030669.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Iikubo, Satoshi, Tatsuya Tokunaga i Hiroshi Ohtani. "Thermodynamic Database Integrated by Electron Theory and CALPHAD Modeling". Tetsu-to-Hagane 97, nr 4 (2011): 166–72. http://dx.doi.org/10.2355/tetsutohagane.97.166.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Joubert, J. M. "Crystal chemistry and Calphad modeling of the σ phase". Progress in Materials Science 53, nr 3 (marzec 2008): 528–83. http://dx.doi.org/10.1016/j.pmatsci.2007.04.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Söderlind, Per, Emily E. Moore i Christine J. Wu. "Thermodynamics Modeling for Actinide Monocarbides and Mononitrides from First Principles". Applied Sciences 12, nr 2 (12.01.2022): 728. http://dx.doi.org/10.3390/app12020728.

Pełny tekst źródła
Streszczenie:
The high-temperature thermodynamical properties for the actinide monocarbides and mononitrides ThC, ThN, UC, UN, PuC, and PuN are calculated from first-principles electronic-structure theory. The electronic structure is modeled with density-functional theory (DFT) and is fully relativistic, including the spin-orbit interaction. Furthermore, the DFT is extended to account for orbital–orbital interactions, by means of a parameter-free orbital-polarization (OP) technique, that has proven to be essential for the 5f electrons in plutonium. Strong anharmonicity and the temperature dependence of the lattice vibrations are captured with the self-consistent ab initio lattice dynamics (SCAILD) method. The calculated free energies and heat capacities are compared to published results from quasi-harmonic (QH) theory, and experiments, where available. For the uranium and plutonium compounds, we make use of CALPHAD assessments to help evaluate the theory. Generally, our anharmonic relativistic approach compares well with both CALPHAD and experiments. For the thorium compounds, our theory is in good accord with QH modeling of the free energy at lower temperatures but for the heat capacity the comparison is less favorable.
Style APA, Harvard, Vancouver, ISO itp.
15

Söderlind, Per, Alexander Landa, Randolph Q. Hood, Emily E. Moore, Aurélien Perron i Joseph T. McKeown. "High-Temperature Thermodynamics Modeling of Graphite". Applied Sciences 12, nr 15 (27.07.2022): 7556. http://dx.doi.org/10.3390/app12157556.

Pełny tekst źródła
Streszczenie:
We present high-temperature thermodynamic properties for graphite from first-principles anharmonic theory. The ab initio electronic structure is obtained from density-functional theory coupled to a lattice dynamics method that is used to model anharmonic lattice vibrations. This combined approach produces free energies and specific heats for graphite that compare well with available experiments and results from models that empirically represent experimental data, such as CALPHAD. We show that anharmonic theory for the phonons is essential for accurate thermodynamic quantities above about 1000 K.
Style APA, Harvard, Vancouver, ISO itp.
16

Xiong, Wei, Klara Asp Grönhagen, John Ågren, Malin Selleby, Joakim Odqvist i Qing Chen. "Investigation of Spinodal Decomposition in Fe-Cr Alloys: CALPHAD Modeling and Phase Field Simulation". Solid State Phenomena 172-174 (czerwiec 2011): 1060–65. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.1060.

Pełny tekst źródła
Streszczenie:
This work is dedicated to simulate the spinodal decomposition of Fe-Cr bcc (body centered cubic) alloys using the phase field method coupled with CALPHAD modeling. Thermodynamic descriptions have been revised after a comprehensive review of information on the Fe-Cr system. The present work demonstrates that it is impossible to reconcile the ab initio enthalpy of mixing at the ground state with the experimental one at 1529 K using the state-of-the-art CALPHAD models. While the phase field simulation results show typical microstructure of spinodal decomposition, large differences have been found on kinetics among experimental results and simulations using different thermodynamic inputs. It was found that magnetism plays a key role on the description of Gibbs energy and mobility which are the inputs to phase field simulation. This work calls for an accurate determination of the atomic mobility data at low temperatures.
Style APA, Harvard, Vancouver, ISO itp.
17

Enoki, Masanori, Bo Sundman, Marcel H. F. Sluiter, Malin Selleby i Hiroshi Ohtani. "Calphad Modeling of LRO and SRO Using ab initio Data". Metals 10, nr 8 (24.07.2020): 998. http://dx.doi.org/10.3390/met10080998.

Pełny tekst źródła
Streszczenie:
Results from DFT calculations are in many cases equivalent to experimental data. They describe a set of properties of a phase at a well-defined composition and temperature, T, most often at 0 K. In order to be practically useful in materials design, such data must be fitted to a thermodynamic model for the phase to allow interpolations and extrapolations. The intention of this paper is to give a summary of the state of the art by using the Calphad technique to model thermodynamic properties and calculate phase diagrams, including some models that should be avoided. Calphad models can decribe long range ordering (LRO) using sublattices and there are model parameters that can approximate short range ordering (SRO) within the experimental uncertainty. In addition to the DFT data, there is a need for experimental data, in particular, for the phase diagram, to determine the model parameters. Very small differences in Gibbs energy of the phases, far smaller than the uncertainties in the DFT calculations, determine the set of stable phases at varying composition and T. Thus, adjustment of the DFT results is often needed in order to obtain the correct set of stable phases.
Style APA, Harvard, Vancouver, ISO itp.
18

Retzl, Philipp, Yao V. Shan, Evelyn Sobotka, Marko Vogric, Wenwen Wei, Erwin Povoden-Karadeniz i Ernst Kozeschnik. "Progress of Physics-based Mean-field Modeling and Simulation of Steel". BHM Berg- und Hüttenmännische Monatshefte 167, nr 1 (styczeń 2022): 15–22. http://dx.doi.org/10.1007/s00501-021-01188-x.

Pełny tekst źródła
Streszczenie:
AbstractThe progress of mean-field modeling and simulation in steel is presented. In the modeling, the focus is put on the development and application of a physical modeling base, including Calphad, diffusion assessment, nucleation and growth of precipitates, and dislocation dynamics. This leads to an improved prediction of the materials response after different thermo-mechanical treatments in terms of microstructure evolution and mechanical properties. The presented case studies represent the success of the integrated computational materials engineering approach.
Style APA, Harvard, Vancouver, ISO itp.
19

Chen, Qing, Kaisheng Wu, Gustaf Sterner i Paul Mason. "Modeling Precipitation Kinetics During Heat Treatment with Calphad-Based Tools". Journal of Materials Engineering and Performance 23, nr 12 (24.10.2014): 4193–96. http://dx.doi.org/10.1007/s11665-014-1255-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Saengdeejing, Arkapol, James E. Saal, Venkateswara Rao Manga i Zi-Kui Liu. "Defects in boron carbide: First-principles calculations and CALPHAD modeling". Acta Materialia 60, nr 20 (grudzień 2012): 7207–15. http://dx.doi.org/10.1016/j.actamat.2012.09.029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Zhang, Ligang, Clemens Schmetterer i Patrick J. Masset. "Thermodynamic Modeling of the CaO-SiO2-M2O (M=K,Na) Systems". High Temperature Materials and Processes 32, nr 3 (14.06.2013): 223–28. http://dx.doi.org/10.1515/htmp-2012-0127.

Pełny tekst źródła
Streszczenie:
AbstractThe aim of the present study is the CALPHAD modeling of the systems CaO-SiO2-M2O (M=K,Na) based on a careful review of the available literature data – phase diagram and thermodynamics – as well as own experiments. The heat capacities (Cp) of three compounds, CaSiO3, K2Ca2Si2O7 and K8CaSi10O25 (determined using drop calorimetry), were included in the optimization of the ternary phase diagram CaO-SiO2-K2O.
Style APA, Harvard, Vancouver, ISO itp.
22

Luo, Alan A., Weihua Sun, Wei Zhong i Ji-Cheng Zhao. "Computational Thermodynamics and Kinetics for Magnesium Alloy Development". AM&P Technical Articles 173, nr 1 (1.01.2015): 26–30. http://dx.doi.org/10.31399/asm.amp.2015-01.p026.

Pełny tekst źródła
Streszczenie:
Abstract Computational thermodynamics and CALPHAD modeling prove useful for selecting and developing new magnesium alloys. This article summarizes an ongoing effort to establish a scientific foundation of computational thermodynamics and kinetics of magnesium alloys to achieve accelerated design and optimization of these alloys for weight reduction in the transportation industries.
Style APA, Harvard, Vancouver, ISO itp.
23

Wei, Wenjie, Wei Chen, Yaping Wang i Zhanmin Cao. "DSC Investigation and Thermodynamic Modeling of the Al–Sb–Sn System". Metals 13, nr 8 (10.08.2023): 1437. http://dx.doi.org/10.3390/met13081437.

Pełny tekst źródła
Streszczenie:
The Al–Sb–Sn ternary system was studied by combining experimental measurement and thermodynamic modeling. The three vertical cross-sections of Al–SnSb, Sn–AlSb, and Sb–AlSn were measured by Differential Scanning Calorimetry (DSC). Based on the Calculation of Phase Diagram (CALPHAD) method, the thermodynamic modeling of the Al–Sb–Sn ternary system was carried out based on the evaluated experimental data by FactSage. A set of thermodynamic model parameters consistent with the experimental data was obtained.
Style APA, Harvard, Vancouver, ISO itp.
24

Lei, Xiong-Hui, Wei Liu, Feng-Hua Luo i Xiao-Gang Lu. "A thermodynamic database of the Ni-Mo-Re system". Journal of Materials Informatics 2, nr 3 (2022): 11. http://dx.doi.org/10.20517/jmi.2022.15.

Pełny tekst źródła
Streszczenie:
Thermodynamic databases are essential prerequisites for developing advanced materials, such as Ni-based superalloys. The present work collects a large amount of experimental and first-principles calculation data concerning the thermodynamics and phase diagrams of the Ni-Mo-Re system, based on which the thermodynamic properties of the ternary and its binary sub-systems Ni-Mo and Mo-Re are assessed by means of the CALculation of PHAse Diagrams (CALPHAD) approach. The thermodynamic database containing all model parameters is established and most experimental data are reproduced satisfactorily. The present work demonstrates the use of the CALPHAD method as a practical appliance in the toolbox of materials informatics to analyze and discriminate various types of data by thermodynamic modeling and then produce more useful data in wider ranges of compositions and temperatures by computational predictions.
Style APA, Harvard, Vancouver, ISO itp.
25

Sargent, Noah, Mason Jones, Richard Otis, Andrew A. Shapiro, Jean-Pierre Delplanque i Wei Xiong. "Integration of Processing and Microstructure Models for Non-Equilibrium Solidification in Additive Manufacturing". Metals 11, nr 4 (1.04.2021): 570. http://dx.doi.org/10.3390/met11040570.

Pełny tekst źródła
Streszczenie:
Integration of models that capture the complex physics of solidification on the macro and microstructural scale with the flexibility to consider multicomponent materials systems is a significant challenge in modeling additive manufacturing processes. This work aims to link process variables, such as energy density, with non-equilibrium solidification by integrating additive manufacturing process simulations with solidification models that consider thermodynamics and diffusion. Temperature histories are generated using a semi-analytic laser powder bed fusion process model and feed into a CALPHAD-based ICME (CALPHAD: Calculation of Phase Diagrams, ICME: Integrated Computational Materials Engineering) framework to model non-equilibrium solidification as a function of both composition and processing parameters. Solidification cracking susceptibility is modeled as a function of composition, cooling rate, and energy density in Al-Cu Alloys and stainless steel 316L (SS316L). Trends in solidification cracking susceptibility predicted by the model are validated by experimental solidification cracking measurements of Al-Cu alloys. Non-equilibrium solidification in additively manufactured SS316L is investigated to determine if this approach can be applied to commercial materials. Modeling results show a linear relationship between energy density and solidification cracking susceptibility in additively manufactured SS316L. This work shows that integration of process and microstructure models is essential for modeling solidification during additive manufacturing.
Style APA, Harvard, Vancouver, ISO itp.
26

Sundman, Bo. "A note on models for phases with order/disorder transitions in thermodynamic software and databases". Journal of Mining and Metallurgy, Section B: Metallurgy 53, nr 3 (2017): 173–77. http://dx.doi.org/10.2298/jmmb170801023s.

Pełny tekst źródła
Streszczenie:
The Calphad method is an important tool to assist the development of new alloys. There are several different thermodynamic software and databases available for such calculations. In some of these alloys there are is an important order/disorder transition, like in superalloys (Ni-based) or Al-Ti alloys. This paper describes the modeling of such systems and a new software that has improved the implementation of the modeling of this transition which can extend the composition range of the application of the model.
Style APA, Harvard, Vancouver, ISO itp.
27

Povoden-Karadeniz, Erwin, Peter Lang, Piotr Warczok, Ahmad Falahati, Wu Jun i Ernst Kozeschnik. "CALPHAD modeling of metastable phases in the Al–Mg–Si system". Calphad 43 (grudzień 2013): 94–104. http://dx.doi.org/10.1016/j.calphad.2013.03.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Shi, Renhai, i Alan A. Luo. "Applications of CALPHAD modeling and databases in advanced lightweight metallic materials". Calphad 62 (wrzesień 2018): 1–17. http://dx.doi.org/10.1016/j.calphad.2018.04.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Liang, Zhi, Jiashi Miao, Renhai Shi, James C. Williams i Alan A. Luo. "CALPHAD modeling and experimental assessment of Ti-Al-Mn ternary system". Calphad 63 (grudzień 2018): 126–33. http://dx.doi.org/10.1016/j.calphad.2018.09.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Honarmandi, P., T. C. Duong, S. F. Ghoreishi, D. Allaire i R. Arroyave. "Bayesian uncertainty quantification and information fusion in CALPHAD-based thermodynamic modeling". Acta Materialia 164 (luty 2019): 636–47. http://dx.doi.org/10.1016/j.actamat.2018.11.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Song, S. S. "Recent research progress on CALPHAD-based ICME modeling of magnesium alloys". IOP Conference Series: Materials Science and Engineering 474 (13.02.2019): 012024. http://dx.doi.org/10.1088/1757-899x/474/1/012024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Rank, Maximilian, Peter Franke i Hans Jürgen Seifert. "Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD". International Journal of Materials Research 110, nr 5 (15.05.2019): 406–21. http://dx.doi.org/10.3139/146.111765.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

JIANG, C., i B. GLEESON. "A combined first-principles/CALPHAD modeling of the Al–Ir system". Acta Materialia 54, nr 15 (wrzesień 2006): 4101–10. http://dx.doi.org/10.1016/j.actamat.2006.03.058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Golumbfskie, William, i Zi-Kui Liu. "CALPHAD/first-principles re-modeling of the Co–Y binary system". Journal of Alloys and Compounds 407, nr 1-2 (styczeń 2006): 193–200. http://dx.doi.org/10.1016/j.jallcom.2005.06.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Li, Kexin, Fangming Wang, Kai Xu, Ming Lou, Kaiyuan Hao, Linjing Wang i Keke Chang. "Exploring NiCrAlYSiTa multicomponent coatings: Combining high-throughput synthesis and CALPHAD modeling". Scripta Materialia 242 (marzec 2024): 115964. http://dx.doi.org/10.1016/j.scriptamat.2023.115964.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Di Napoli, Paolo, Benoît Appolaire, Elisabeth Aeby Gautier i Adeline Bénéteau. "Modeling of β→α Transformation in Complex Titanium Alloys". Solid State Phenomena 172-174 (czerwiec 2011): 1044–49. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.1044.

Pełny tekst źródła
Streszczenie:
A model has been developed which is able to predict the kinetics of β → α transformation in industrial multicomponent titanium alloys during complex heat treatments. It isbased on (i) analytical nucleation and growth laws based on simple geometric representationsof the di erent morphologies commonly observed in these alloys; (ii) the assumption of localequilibrium at interfaces, handled within the CalPhaD framework; (iii) averaged solute balancesin each morphology. The potentialities of the model will be demonstrated on the Ti17 industrialalloy upon isothermal holdings and cooling from the β phase field.
Style APA, Harvard, Vancouver, ISO itp.
37

Hu, B., Y. Du, H. Xu, W. Sun, W. W. Zhang i D. Zhao. "Thermodynamic description of the C-Ge and C-Mg systems". Journal of Mining and Metallurgy, Section B: Metallurgy 46, nr 1 (2010): 97–103. http://dx.doi.org/10.2298/jmmb1001097h.

Pełny tekst źródła
Streszczenie:
The thermodynamic modeling for the C-Ge and C-Mg systems is performed by the CALPHAD method. The enthalpy of formation for Mg2C3, the experimental value of which is not available in the literature, is obtained via first-principles calculation to refine the thermodynamic modeling of the C-Mg system. A comparison of the thermodynamic calculations with the available literature data shows that the presently obtained two sets of thermodynamic parameters for the C-Ge and C-Mg systems can well describe the these two systems.
Style APA, Harvard, Vancouver, ISO itp.
38

Tang, C., P. Zhou, D. D. Zhao, X. M. Yuan, Y. Tang, P. S. Wang, B. Hu, Y. Du i H. H. Xu. "Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation". Journal of Mining and Metallurgy, Section B: Metallurgy 48, nr 1 (2012): 123–30. http://dx.doi.org/10.2298/jmmb110909017t.

Pełny tekst źródła
Streszczenie:
The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram) approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.
Style APA, Harvard, Vancouver, ISO itp.
39

Pang, M., Y. Peng, P. Zhou i Y. Du. "Thermodynamic modeling of the Hf-N system". Journal of Mining and Metallurgy, Section B: Metallurgy 54, nr 1 (2018): 111–18. http://dx.doi.org/10.2298/jmmb170520055p.

Pełny tekst źródła
Streszczenie:
Hf-N based alloys have been widely used and studied in the fields of electronic devices and cutting tools industry. A thermodynamic description of this system is essential for further materials development. By means of CALPHAD method, a thermodynamic modeling of the Hf-N system was carried out based on the available phase diagram data as well as thermodynamic property data. The Fcc phase is modeled as (Hf, Va)1(N, Va)1 to cover the composition range since the solubility of nitrogen in Fcc phase is reported up to about 52 at.%. A set of self-consistent thermodynamic parameters for the Hf-N system has been obtained. The computed phase diagrams and thermodynamic quantities using the present parameters agree well with the experimental data.
Style APA, Harvard, Vancouver, ISO itp.
40

Danielewski, Marek, i Bartłomiej Wierzba. "Intrinsic Diffusivities and Modeling of the Diffusion Multiples". Defect and Diffusion Forum 273-276 (luty 2008): 105–12. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.105.

Pełny tekst źródła
Streszczenie:
In order to model the diffusion in multicomponent and multiphase systems we define and use the volume fixed frame of reference. In this unique frame all diffusion fluxes are expressed by the combined Darken-Nernst-Planck formulae. The components mobility is estimated using the NIST data and Calphad approach. The resulting CADiff method is used for the modeling (inter)diffusion process in the multicomponent diffusion multiple. We shows results for the IN718-Rene88 terminal compositions. Comparison of the simulation results with experimental data shows good agreement. The presented CADiff method allows to model interdiffusion in multicomponent non-ideal systems. When the thermodynamical data are available, the method allows to include reactions, variable partial molar volumes and effect of stress.
Style APA, Harvard, Vancouver, ISO itp.
41

Dargahi Noubary, Kaveh, Michael Kellner, Johannes Hötzer, Marco Seiz, Hans J. Seifert i Britta Nestler. "Data workflow to incorporate thermodynamic energies from Calphad databases into grand-potential-based phase-field models". Journal of Materials Science 56, nr 20 (12.04.2021): 11932–52. http://dx.doi.org/10.1007/s10853-021-06033-7.

Pełny tekst źródła
Streszczenie:
Abstract In order to approximate Gibbs energy functions, a semi-automated framework is introduced for binary and ternary material systems, using Calphad databases. To generate Gibbs energy formulations by means of second-order polynomials, the framework includes a precise approach. Furthermore, an optional extensional step enables the modeling of systems in which a direct generation leads to the unsatisfactory results in the representation of the thermodynamics. Furthermore, an optional extensional step enables the modeling of systems, in which a direct generation leads to the unsatisfactory results, when representing the thermodynamics. Within this extension, the commonly generated functions are modified to satisfy the equilibrium conditions in the observed material systems, leading to a better correlation with thermodynamic databases. The generated Gibbs energy formulations are verified by recalculating the equilibrium concentrations of the phases and rebuilding the phase diagrams in the considered concentration and temperature ranges, prior to the simulation studies. For all comparisons, a close match is achieved between the results and the Calphad databases. As practical examples of the method, phase-field simulation studies for the directional solidification of the binary – and the ternary – eutectic systems are performed. Good agreements between the simulation results and the reported theoretical and experimental studies from literature are found, which indicates the applicability of the presented approaches. Graphical Abstract
Style APA, Harvard, Vancouver, ISO itp.
42

Zhang, Yu, Biao Hu, Benfu Li, Man Zhang, Qingping Wang i Yong Du. "Experimental investigation and CALPHAD modeling of the Cu–Cr–Si ternary system". Calphad 74 (wrzesień 2021): 102324. http://dx.doi.org/10.1016/j.calphad.2021.102324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Chang, Kunok, Junhyun Kwon i Gyeong-Geun Lee. "Phase-field Modeling of Precipitate Behavior in RPV Steel Using CALPHAD Database". Korean Journal of Metals and Materials 56, nr 6 (5.06.2018): 472–78. http://dx.doi.org/10.3365/kjmm.2018.56.6.472.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Xie, Wei, i Dane Morgan. "CALPHAD modeling and ab initio calculations of the Np-U-Zr system". Computational Materials Science 143 (luty 2018): 505–14. http://dx.doi.org/10.1016/j.commatsci.2017.11.042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Wang, Jian Wei, Xiang Peng Xiao i Guo Jie Huang. "Thermodynamic Calculation of the Precipitate in Cu-Ni-Si-Co Alloys and Experimental Investigation". Applied Mechanics and Materials 423-426 (wrzesień 2013): 235–40. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.235.

Pełny tekst źródła
Streszczenie:
An initial thermodynamic modeling of the Cu-Ni-Si-Co system was built using CALPHAD approach. The liquid phase and terminal solid solutions were described by substitutional solution model, the nonlinear compounds used sublattice model and the other binary compounds were treated to be stoichiometric compounds. Based on the experimental conditions, the thermodynamic calculations were done to predict the stable precipitates of the alloys and investigated the effect of Co on the phase transitions. The experimental results showed an acceptable agreement with the calculation and verified the reliability of the Cu-Ni-Si-Co thermodynamic modeling.
Style APA, Harvard, Vancouver, ISO itp.
46

Rutkowska, Iwona, i Jan Kapała. "Modeling of the Thermodynamics of the Pseudobinary RbCl-GdCl3 System". Zeitschrift für Naturforschung A 62, nr 5-6 (1.06.2007): 270–74. http://dx.doi.org/10.1515/zna-2007-5-607.

Pełny tekst źródła
Streszczenie:
The Gibbs energies of formation of the pseudobinary compounds Rb3GdCl6(s) and RbGd2Cl7(s) from the constituent metal halides, determined by Knudsen effusion mass spectrometry, were compared with the thermodynamic properties of the solid and liquid phases of the RbCl-GdCl3 system, obtained by different methods. The compatibility of the results obtained in this work for pseudobinary compounds with literature data was assessed by an optimization procedure using the CALPHAD method. The liquid phase in the RbCl-GdCl3 system was described by the associate model. The phase diagram, thermodynamic functions of mixing of the system studied, and the Gibbs energies of formation of the pseudobinary compounds: Rb2GdCl5(s), Rb3GdCl6(s), and RbGd2Cl7(s) resulted from this optimization procedure.
Style APA, Harvard, Vancouver, ISO itp.
47

Nomoto, Sukeharu, Masahiro Kusano, Houichi Kitano i Makoto Watanabe. "Multi-Phase Field Method for Solidification Microstructure Evolution for a Ni-Based Alloy in Wire Arc Additive Manufacturing". Metals 12, nr 10 (14.10.2022): 1720. http://dx.doi.org/10.3390/met12101720.

Pełny tekst źródła
Streszczenie:
Wire arc additive manufacturing achieves high efficiency and low costs by using a melting wire for directional depositions. Thermal analyses and the finite element method have been applied to predict residual stress and the deformation of fabricated parts. For Ni-based alloy production, a method for predicting solidification microstructure evolution with segregation is needed in order to design precise heat treatment procedures. In this study, a multi-phase field method coupled with a CALPHAD database is developed to simulate the solidification microstructure evolution of a practical Ni-based alloy. Thermal analyses of a wire arc additive manufacturing model were performed by the process modeling of multi-pass depositions with a running cyclic arc. Solidification microstructure evolution was obtained using the temperature profile in each deposited layer by the multi-phase field method. These predicted microstructures are compared with experimental measurements. It is confirmed that the multi-phase field method coupled with the CALPHAD database is effective for predicting solidification microstructure and segregation in the engineering of Ni-based alloys.
Style APA, Harvard, Vancouver, ISO itp.
48

Homolová, Viera, i Aleš Kroupa. "Thermodynamic Modeling of the Al–Co–Pd Ternary System, Aluminum Rich Corner". Metals 11, nr 11 (9.11.2021): 1803. http://dx.doi.org/10.3390/met11111803.

Pełny tekst źródła
Streszczenie:
The aluminum-rich corner of the Al–Co–Pd ternary system was thermodynamically modeled by the CALPHAD method in the present study. The ternary system is a complex system with many ternary phases (W, V, F, U, Y2, C2). All ternary phases, except phase U, were modeled as stoichiometric compounds. The order–disorder model was used to describe the BCC–B2 and BCC-A2 phases. Solubility of the third element in binary intermetallic phases (Al5Co2, Al3Co, Al9Co2, Al13Co4, Al3Pd and Al3Pd2) was modeled. The experimental results collected from the literature were used in the optimization of the thermodynamic parameters. A good agreement between the experimental results and the calculations was achieved.
Style APA, Harvard, Vancouver, ISO itp.
49

Tanaka, K., M. Hara, Yasu Yogo, Kou Nakanishi i Carlos Capdevila. "Phase Transformation Modeling of Medium-Carbon Forging Steel". Materials Science Forum 539-543 (marzec 2007): 2443–48. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.2443.

Pełny tekst źródła
Streszczenie:
The kinetics of phase transformations in medium-carbon forging steels (MCFS) have been modeled based on CALPHAD multicomponent thermodynamics and the classical nucleation-growth theory. New treatments include the time dependency of parabolic growth rate of proeutectoid ferrite (α) , which account for the soft impingement effect by carbon enrichment in austenite (γ). And a potential transition of γ/α interface equilibrium has also been considered depending on temperatures and velocity of the moving interface. To make a realistic prediction of the onset of pearlite (P) transformation, a normal distribution of γ grain size has been assumed and successive α→P transformation kinetics in each grain size have been summated. The developed program coupled with thermodynamic solver, 'ThermoCalc', calculated the isothermal kinetics of MCFS and has been found to predict well the effect of minor difference of chemical composition / holding temperatures.
Style APA, Harvard, Vancouver, ISO itp.
50

Cao, Z., J. Xin, C. Chen, S. Liu, B. Hu, C. Tang i Y. Du. "Thermodynamic modeling of the Bi-M (M = Ti, Cr, V) systems". Journal of Mining and Metallurgy, Section B: Metallurgy 49, nr 3 (2013): 307–13. http://dx.doi.org/10.2298/jmmb130127033c.

Pełny tekst źródła
Streszczenie:
The Bi-M (M = Ti, Cr, V) systems have been critically reviewed and modeled by means of the CALPHAD technique. All the intermetallics (BiTi3, BiTi2, Bi9Ti8, Bi3Ti2 and Bi2Ti) were treated as stoichiometric compounds. The enthalpy of formation at 0 K for BiTi2 was computed via first-principles calculations to assist the thermodynamic modeling. The gas phases for the Bi-Cr and Bi-V systems were treated as ideal gas. A set of self-consistent thermodynamic parameters has been finally obtained for each of these binary systems. Comparisons between the calculated and measured phase diagrams as well as first-principles calculations show that most of experimental data can be satisfactorily reproduced by the present thermodynamic descriptions.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii