Artykuły w czasopismach na temat „Calcium aluminosilicate”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Calcium aluminosilicate.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Calcium aluminosilicate”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Loganina, Valentina Ivanovna, Ludmila V. Makarova, Roman V. Tarasov i Anton D. Ryzhov. "The Limy Composite Binder with the Use of the Synthesized Aluminosilicates". Applied Mechanics and Materials 662 (październik 2014): 11–14. http://dx.doi.org/10.4028/www.scientific.net/amm.662.11.

Pełny tekst źródła
Streszczenie:
The information about the structure and properties of the synthesized nanodisperse additive based on the aluminosilicates of calcium, intended for the production of limy dry construction mixes are provided. It is shown that the mineral composition of an additive is presented by crystal types of hydroxides of aluminum (bayerite and boyhmite) and the nanostructured amorphous aluminosilicate of calcium. It is established that the additive based on the aluminosilicates accelerates the process of hardening of limy compositions.
Style APA, Harvard, Vancouver, ISO itp.
2

Walkley, Brant, Rackel San Nicolas, Marc-Antoine Sani, John D. Gehman, Jannie S. J. van Deventer i John L. Provis. "Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders". Powder Technology 297 (wrzesień 2016): 17–33. http://dx.doi.org/10.1016/j.powtec.2016.04.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jiang, Fengrui, Laifei Cheng, Yiguang Wang i Xuanxuan Huang. "Calcium–magnesium aluminosilicate corrosion of barium–strontium aluminosilicates with different strontium content". Ceramics International 43, nr 1 (styczeń 2017): 212–21. http://dx.doi.org/10.1016/j.ceramint.2016.09.138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Snellings, Ruben. "Surface Chemistry of Calcium Aluminosilicate Glasses". Journal of the American Ceramic Society 98, nr 1 (4.10.2014): 303–14. http://dx.doi.org/10.1111/jace.13263.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Higby, P. L., Lynda E. Busse i Ishwar D. Aggarwal. "Properties of Low-Silica Calcium Aluminosilicate Glasses". Materials Science Forum 67-68 (styczeń 1991): 155–60. http://dx.doi.org/10.4028/www.scientific.net/msf.67-68.155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

SHELBY, J. E. "Formation and Properties of Calcium Aluminosilicate Glasses". Journal of the American Ceramic Society 68, nr 3 (marzec 1985): 155–58. http://dx.doi.org/10.1111/j.1151-2916.1985.tb09656.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chervonnyi, A. D., i N. A. Chervonnaya. "Synthetic calcium aluminosilicate monolith: IV. Mechanical properties". Russian Journal of Inorganic Chemistry 55, nr 10 (październik 2010): 1529–35. http://dx.doi.org/10.1134/s0036023610100062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Agnello, Gabriel, Robert Manley, Nicholas Smith, William LaCourse i Alastair Cormack. "Triboelectric properties of calcium aluminosilicate glass surfaces". International Journal of Applied Glass Science 9, nr 1 (22.05.2017): 3–15. http://dx.doi.org/10.1111/ijag.12276.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hwa, Luu-Gen. "Rayleigh-Brillouin scattering in calcium aluminosilicate glasses". Journal of Raman Spectroscopy 29, nr 4 (kwiecień 1998): 269–72. http://dx.doi.org/10.1002/(sici)1097-4555(199804)29:4<269::aid-jrs234>3.0.co;2-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Derrien, A. C., H. Oudadesse, J. C. Sangleboeuf, P. Briard i A. Lucas-Girot. "Thermal behaviour of composites aluminosilicate-calcium phosphates". Journal of Thermal Analysis and Calorimetry 75, nr 3 (2004): 937–46. http://dx.doi.org/10.1023/b:jtan.0000027187.14921.86.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Sharonova, O. M., N. A. Oreshkina i A. M. Zhizhaev. "Composition and structure of calcium aluminosilicate microspheres". Thermal Engineering 64, nr 6 (24.05.2017): 415–21. http://dx.doi.org/10.1134/s0040601517060064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Wang, Moo‐Chin, Min‐Hsiung Hon i Fu‐Su Yen. "Crystallization kinetics of lithium calcium aluminosilicate glass". Journal of the Chinese Institute of Engineers 13, nr 2 (marzec 1990): 233–39. http://dx.doi.org/10.1080/02533839.1990.9677251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

McMillan, Paul, Gilles Peraudeau, John Holloway i Jean Pierre Coutures. "Water solubility in a calcium aluminosilicate melt". Contributions to Mineralogy and Petrology 94, nr 2 (1986): 178–82. http://dx.doi.org/10.1007/bf00592934.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

de Ligny, Dominique, i Edgar F. Westrum. "Entropy of calcium and magnesium aluminosilicate glasses". Chemical Geology 128, nr 1-4 (czerwiec 1996): 113–28. http://dx.doi.org/10.1016/0009-2541(95)00167-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Esposito, L., i A. Bellosi. "Ceramic oxide bonds using calcium aluminosilicate glasses". Journal of Materials Science 40, nr 9-10 (maj 2005): 2493–98. http://dx.doi.org/10.1007/s10853-005-1981-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Huang, C., i E. C. Behrman. "Structure and properties of calcium aluminosilicate glasses". Journal of Non-Crystalline Solids 128, nr 3 (maj 1991): 310–21. http://dx.doi.org/10.1016/0022-3093(91)90468-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kozhuhova, N. I., I. V. Zhernovsky, M. I. Kozhukhova i E. V. Voitovich. "Correlation of Quality Assessment Methods of Class F Fly as for Synthesis of Geopolymers". Materials Science Forum 974 (grudzień 2019): 61–66. http://dx.doi.org/10.4028/www.scientific.net/msf.974.61.

Pełny tekst źródła
Streszczenie:
The demand of highly effective aluminosilicates such as class F fly ash for use in geopolymer synthesis initiated a strong scientific interest for a design of the quality assessment methods. At the same time, the existing assessment methods apparently differ in key parameters which determine the quality of aluminosilicate. This research was focused on determination of relationship between the key parameters of different assessment methods for different types of low-calcium fly ash with high portion of vitreous phase. The insoluble aluminosilicate portion in fly ash that remained after treatment in aggressive acidic media followed by high-temperature treatment at 1000 °C (or the parameter α) was measured in this study. The experimental data showed a very low correlation (R2=0.34) between parameter α and compressive strength of the fly-ash based geopolymer paste. The correlation factors between such genetic parameters of fly ash as portion of vitreous phase (C), SiO2-bonding degree in vitreous phase (fSi) and parameter α demonstrated dramatically different values: R2 (С-α)=0.01; R2(fSi-α)=0.71; R2 (С-fSi)=0.0, respectively.
Style APA, Harvard, Vancouver, ISO itp.
18

Hossain, Akhter B., Satiar A. Shirazi, Jarrod Persun i Narayanan Neithalath. "Properties of Concrete Containing Vitreous Calcium Aluminosilicate Pozzolan". Transportation Research Record: Journal of the Transportation Research Board 2070, nr 1 (styczeń 2008): 32–38. http://dx.doi.org/10.3141/2070-05.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wiesner, Valerie L., i Narottam P. Bansal. "Crystallization kinetics of calcium–magnesium aluminosilicate (CMAS) glass". Surface and Coatings Technology 259 (listopad 2014): 608–15. http://dx.doi.org/10.1016/j.surfcoat.2014.10.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hennet, Louis, James W. E. Drewitt, Daniel R. Neuville, Viviana Cristiglio, Jad Kozaily, Séverine Brassamin, Didier Zanghi i Henry E. Fischer. "Neutron diffraction of calcium aluminosilicate glasses and melts". Journal of Non-Crystalline Solids 451 (listopad 2016): 89–93. http://dx.doi.org/10.1016/j.jnoncrysol.2016.05.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

De Maeyer, E. A. P., i R. M. H. Verbeeck. "Analysis of bioactive fluoride-containing calcium aluminosilicate glasses". Analytica Chimica Acta 358, nr 1 (styczeń 1998): 79–83. http://dx.doi.org/10.1016/s0003-2670(97)00591-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

MINATO, Daisuke, Sadayuki WATANABE, Syuichi HARASAWA i Kazuo YAMADA. "ADSORPTION BEHAVIOR OF CS FOR CALCIUM-ALUMINOSILICATE-HYDRATE". Cement Science and Concrete Technology 69, nr 1 (2015): 53–60. http://dx.doi.org/10.14250/cement.69.53.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Khater, H. M. "Effect of Calcium on Geopolymerization of Aluminosilicate Wastes". Journal of Materials in Civil Engineering 24, nr 1 (styczeń 2012): 92–101. http://dx.doi.org/10.1061/(asce)mt.1943-5533.0000352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Vargheese, K. Deenamma, Adama Tandia i John C. Mauro. "Origin of dynamical heterogeneities in calcium aluminosilicate liquids". Journal of Chemical Physics 132, nr 19 (21.05.2010): 194501. http://dx.doi.org/10.1063/1.3429880.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Zulkarnain, Nurul Nazmin, Syed Ahmad Farhan, Yon Azwa Sazali, Nasir Shafiq, Siti Humairah Abd Rahman, Afif Izwan Abd Hamid i Mohd Firdaus Habarudin. "Reducing the Waiting-On-Cement Time of Geopolymer Well Cement using Calcium Chloride (CaCl2) as the Accelerator: Analysis of the Compressive Strength and Acoustic Impedance for Well Logging". Sustainability 13, nr 11 (28.05.2021): 6128. http://dx.doi.org/10.3390/su13116128.

Pełny tekst źródła
Streszczenie:
Geopolymer cement (GPC) is an aluminosilicate-based binder that is cost-effective and eco-friendly, with high compressive strength and resistance to acid attack. It can prevent degradation when exposed to carbon dioxide by virtue of the low calcium content of the aluminosilicate source. The effect of the concentration of calcium chloride (CaCl2) as the accelerator on the compressive strength and acoustic impedance of GPC for well cement, while exposed to high pressure and high temperatures, is presented. Fly ash from the Tanjung Bin power plant, which is categorized as Class F fly ash according to ASTM C618-19, was selected as the aluminosilicate source for the GPC samples. Sodium hydroxide and sodium silicate were employed to activate the geopolymerization reaction of the aluminosilicate. Five samples with a density of 15 ppg were prepared with concentrations of CaCl2 that varied from 1% to 4% by weight of cement. Findings revealed that the addition of 1% CaCl2 is the optimum concentration for the curing conditions of 100 °C and 3000 psi for 48 h, which resulted in the highest compressive strength of the product. Results also indicate that GPC samples that contain CaCl2 have a smaller range of acoustic impedance compared to that of ordinary Portland cement.
Style APA, Harvard, Vancouver, ISO itp.
26

Myers, Rupert J., Emilie L'Hôpital, John L. Provis i Barbara Lothenbach. "Composition–solubility–structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H)". Dalton Transactions 44, nr 30 (2015): 13530–44. http://dx.doi.org/10.1039/c5dt01124h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Zhang, Lin, Hiroshi Yamada, Yusuke Imai i Chao Nan Xu. "Development of A Novel Elasticoluminescent Material with Calcium Aluminosilicate". Key Engineering Materials 368-372 (luty 2008): 352–54. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.352.

Pełny tekst źródła
Streszczenie:
We successfully developed a novel elasticoluminescent (EML) material with water resistance, CaAl2Si2O8:Eu2+ (CAS). The crystal structure, photoluminescence (PL) and EML properties were characterized for both CAS and the typical EML material SrAl2O4:Eu2+(SAO). Contrary to SAO, CAS showed superior water resistance property. No changes were found in the XRD patterns, and the PL, EML intensities, during the whole examination of water immersion test.
Style APA, Harvard, Vancouver, ISO itp.
28

Cormier, Laurent, Daniel R. Neuville i Georges Calas. "Structure and properties of low-silica calcium aluminosilicate glasses". Journal of Non-Crystalline Solids 274, nr 1-3 (wrzesień 2000): 110–14. http://dx.doi.org/10.1016/s0022-3093(00)00209-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ono, Shigeaki, Tsuyoshi Iizuka i Takumi Kikegawa. "Compressibility of the calcium aluminosilicate, CAS, phase to 44GPa". Physics of the Earth and Planetary Interiors 150, nr 4 (czerwiec 2005): 331–38. http://dx.doi.org/10.1016/j.pepi.2004.12.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Chung, T. K., i D. H. Baker. "Phosphorus utilization in chicks fed hydrated sodium calcium aluminosilicate." Journal of Animal Science 68, nr 7 (1990): 1992. http://dx.doi.org/10.2527/1990.6871992x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

She, Jiangbo, Shigeki Sawamura i Lothar Wondraczek. "Scratch hardness of rare-earth substituted calcium aluminosilicate glasses". Journal of Non-Crystalline Solids: X 1 (marzec 2019): 100010. http://dx.doi.org/10.1016/j.nocx.2019.100010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Chervonnyi, A. D., N. V. Chukanov i I. V. Pekov. "Synthetic Calcium Aluminosilicate Monolith: Transformations in an Aqueous Medium". Russian Journal of Inorganic Chemistry 63, nr 4 (kwiecień 2018): 530–36. http://dx.doi.org/10.1134/s003602361804006x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Baesso, M. L., A. C. Bento, A. R. Duarte, A. M. Neto, L. C. M. Miranda, J. A. Sampaio, T. Catunda, S. Gama i F. C. G. Gandra. "Nd2O3 doped low silica calcium aluminosilicate glasses: Thermomechanical properties". Journal of Applied Physics 85, nr 12 (15.06.1999): 8112–18. http://dx.doi.org/10.1063/1.370649.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kim, Tae Sung, i Joo Hyun Park. "Structure-Viscosity Relationship of Low-silica Calcium Aluminosilicate Melts". ISIJ International 54, nr 9 (2014): 2031–38. http://dx.doi.org/10.2355/isijinternational.54.2031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Gołek, Ł., J. Deja i M. Sitarz. "The hydration process of alkali activated calcium aluminosilicate glasses". Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B 60, nr 2 (11.04.2019): 78–90. http://dx.doi.org/10.13036/17533562.60.2.14026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Martel, Laura, Mathieu Allix, Francis Millot, Vincent Sarou-Kanian, Emmanuel Véron, Sandra Ory, Dominique Massiot i Michaël Deschamps. "Controlling the Size of Nanodomains in Calcium Aluminosilicate Glasses". Journal of Physical Chemistry C 115, nr 39 (15.09.2011): 18935–45. http://dx.doi.org/10.1021/jp200824m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Sharma, Sudhanshu, Dinesh Medpelli, Shaojiang Chen i Dong-Kyun Seo. "Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production". RSC Advances 5, nr 80 (2015): 65454–61. http://dx.doi.org/10.1039/c5ra01823d.

Pełny tekst źródła
Streszczenie:
Effective, recyclable and yet inexpensive base catalysts have been developed by introducing hierarchical pore structures to aluminosilicate geopolymer, an emerging green material, and modifying the material through calcium ion exchange.
Style APA, Harvard, Vancouver, ISO itp.
38

Daniil, Andreana, George P. Dimitrakopulos, Savvas Varitis, George Vourlias, George Kaimakamis, Erasmia Pantazopoulou, Eleni Pavlidou, Anastasios I. Zouboulis, Theodoros Karakostas i Philomela Komninou. "Stabilization of Cr-rich tannery waste in fly ash matrices". Waste Management & Research: The Journal for a Sustainable Circular Economy 36, nr 9 (31.05.2018): 818–26. http://dx.doi.org/10.1177/0734242x18775488.

Pełny tekst źródła
Streszczenie:
In the present work, the stabilization/solidification of a Cr-rich ash obtained from the anoxic incineration of tannery hazardous wastes was studied. Chromium in the starting waste was exclusively in amorphous form and in trivalent state. The waste was embedded in fly ash-based cementitious material matrices. Calcium and sodium hydroxides, as well as sodium silicate, were used as activators. The proposed process combines mechanical activation with hydrothermal curing. Successful immobilization of chromium was achieved, as attested by standard leaching tests. Backscattered electron images revealed the existence of the C-S-H gel, and elemental mapping by energy dispersive X-ray spectroscopy showed a good interdispersion of chromate and aluminosilicate species, verifying that chromium was well distributed in the final amorphous cementitious matrix. X-ray diffraction confirmed the absence of Cr-rich crystalline phases of calcium aluminosilicates, where chromium can enter in hexavalent state. The stiffness of the stabilized samples was reduced with increasing the amount of added Cr-rich ash, as attested by measurements of the dynamic Young’s modulus.
Style APA, Harvard, Vancouver, ISO itp.
39

Sturino, Joseph M., Karina Pokusaeva i Robert Carpenter. "Effective Sequestration of Clostridium difficile Protein Toxins by Calcium Aluminosilicate". Antimicrobial Agents and Chemotherapy 59, nr 12 (6.07.2015): 7178–83. http://dx.doi.org/10.1128/aac.05050-14.

Pełny tekst źródła
Streszczenie:
ABSTRACTClostridium difficileis a leading cause of antibiotic-associated diarrhea and the etiologic agent responsible forC. difficileinfection. Toxin A (TcdA) and toxin B (TcdB) are nearly indispensable virulence factors forClostridium difficilepathogenesis. Given the toxin-centric mechanism by whichC. difficilepathogenesis occurs, the selective sequestration with neutralization of TcdA and TcdB by nonantibiotic agents represents a novel mode of action to prevent or treatC. difficile-associated disease. In this preclinical study, we used quantitative enzyme immunoassays to determine the extent by which a novel drug, calcium aluminosilicate uniform particle size nonswelling M-1 (CAS UPSN M-1), is capable of sequestering TcdA and TcdBin vitro. The following major findings were derived from the present study. First, we show that CAS UPSN M-1 efficiently sequestered both TcdA and TcdB to undetectable levels. Second, we show that CAS UPSN M-1's affinity for TcdA is greater than its affinity for TcdB. Last, we show that CAS UPSN M-1 exhibited limited binding affinity for nontarget proteins. Taken together, these results suggest that ingestion of calcium aluminosilicate might protect gastrointestinal tissues from antibiotic- or chemotherapy-inducedC. difficileinfection by neutralizing the cytotoxic and proinflammatory effects of luminal TcdA and TcdB.
Style APA, Harvard, Vancouver, ISO itp.
40

Śnieżek, Edyta, Maciej Ludwig i Jacek Szczerba. "Formation Mechanism of Gehlenite-Anorthite Materials Containing ZrO2 from Andalusite, CaCO3 and ZrO2". Key Engineering Materials 788 (listopad 2018): 120–25. http://dx.doi.org/10.4028/www.scientific.net/kem.788.120.

Pełny tekst źródła
Streszczenie:
This paper reports the results of using natural andalusite (Al2SiO5) in combination with CaCO3 and ZrO2 in order to obtain aluminosilicate product. This work was devoted to the study of the mechanism of new phases creation in the Al2SiO5-CaO-ZrO2 phase system during heating at different temperatures (1000, 1100, 1200, 1300 and 1400°C). Al2SiO5, CaCO3, and ZrO2 were used in a weight ratio of 45:50:5, respectively. According to the phase composition and chemical analysis in microareas, it was found, that andalusite reacted with CaO giving two calcium aluminosilicates: gehlenite and anorthite at 1400°C. ZrO2 was presented as the separated phase at this temperature. Other occurring transition phases were: CaZrO3 at 1000 and 1200°C, Ca2SiO4 at 1000, 1100 and 1200°C, Ca3ZrSi2O9 at 1300°C. The synthesis mostly depended on the diffusion of Ca2+ ions.
Style APA, Harvard, Vancouver, ISO itp.
41

McCarthy, G. J., D. M. Johansen, S. J. Steinwand i A. Thedchanamoorthy. "X-Ray Diffraction Analysis of Fly ASH". Advances in X-ray Analysis 31 (1987): 331–42. http://dx.doi.org/10.1154/s037603080002214x.

Pełny tekst źródła
Streszczenie:
AbstractMethods for, and results from, x-ray diffraction analysis of large numbers of fly ash samples obtained from U.S. power plants are described. Qualitative XRD indicates that low-calcium/Class F fly ash (usually derived from bituminous coal) consists typically of the crystalline phases quartz, mullite, hematite and magnetite in a matrix of aluminosilicate glass. Highcalcium fly ash (derived from low-rank coal) has a much more complex assemblage of crystalline phases that typically includes these four phases plus lime, periclase, anhydrite, alkali sulfates, tricalcium aluminate, dicalcium silicate, melilite, merwinlte and a sodalite-structure phase. Glass compositions among the particles are more heterogeneous and range from calcium aluminate to sodium calcium aluminosilicate, Every ash studied Is mixed with an internal Intensity standard (rutile) so that Intensity ratios can be used to make comparisons of the relative amounts of crystalline phases. An error analysis was performed to define the level of uncertainty in making these comparisons. These intensity ratios will be used for quantitative XRD phase analyses when reference intensity ratios for each fly ash phase become available.
Style APA, Harvard, Vancouver, ISO itp.
42

Zhang, Lin, Chen Shu Li, Hiroshi Yamada i Chao Nan Xu. "A Novel Blue-Violet Emitting Mechanoluminescent Material with Calcium Aluminosilicate". Key Engineering Materials 388 (wrzesień 2008): 277–80. http://dx.doi.org/10.4028/www.scientific.net/kem.388.277.

Pełny tekst źródła
Streszczenie:
We have demonstrated a novel blue-violet emitting mechanoluminscent(ML) material with calcium aluminosilicate(CaAl2Si2O8:Eu2+). The ML was clearly visible to the naked eye in the atmosphere and showed a similar spectrum to photoluminescence with a peak at 430nm. In order to enhance the ML intensity, various rare earth ions were selected as co-dopants including La, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. It was found that the intensity of ML was strongly dependent on the kinds of the codoped rare earth ion, especially the co-doping of Ho3+ was found to greatly enhance the ML intensity. From the results of thermoluminescence(ThL) measurements, the enhancement of the ML intensity was closely related with the filled trap concentration and trap depth.
Style APA, Harvard, Vancouver, ISO itp.
43

KAWASAKI, Mitsuharu, Setsuhisa TANABE, Katsuhisa TANAKA, Jianrong QIU i Kazuyuki HIRAO. "Long Lasting Phosphorescence of Calcium Aluminosilicate Glasses Doped with Eu2+." Journal of the Society of Materials Science, Japan 48, nr 6 (1999): 531–34. http://dx.doi.org/10.2472/jsms.48.531.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

PHILLIPS, TIMOTHY D., LEON F. KUBENA, ROGER B. HARVEY, DENNIS R. TAYLOR i NORMAN D. HEIDELBAUGH. "Hydrated Sodium Calcium Aluminosilicate: A High Affinity Sorbent for Aflatoxin". Poultry Science 67, nr 2 (luty 1988): 243–47. http://dx.doi.org/10.3382/ps.0670243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Tashima, M. M., L. Soriano, J. Payá, J. Monzó i M. V. Borrachero. "Assessment of pozzolanic/hydraulic reactivity of vitreous calcium aluminosilicate (VCAS)". Materials & Design 96 (kwiecień 2016): 424–30. http://dx.doi.org/10.1016/j.matdes.2016.02.036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Moesgaard, Mette, Ralf Keding, Jørgen Skibsted i Yuanzheng Yue. "Evidence of Intermediate-Range Order Heterogeneity in Calcium Aluminosilicate Glasses". Chemistry of Materials 22, nr 15 (10.08.2010): 4471–83. http://dx.doi.org/10.1021/cm1011795.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Makishima, Akio, Hajime Kubo i Takajjro Shimohira. "Formation and Crystallization of Yttrium Aluminosilicate Glasses Containing Calcium Oxide". Journal of the American Ceramic Society 69, nr 6 (czerwiec 1986): C—130—C—131. http://dx.doi.org/10.1111/j.1151-2916.1986.tb07460.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Yu, Z., i J. Silcox. "Observation of Non-uniformities in Calcium Aluminosilicate Glass using EELS". Microscopy and Microanalysis 8, S02 (sierpień 2002): 604–5. http://dx.doi.org/10.1017/s1431927602105964.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Park, Joo Hyun. "Solidification Behavior of Calcium Aluminosilicate Melts Containing Magnesia and Fluorspar". Journal of the American Ceramic Society 89, nr 2 (luty 2006): 608–15. http://dx.doi.org/10.1111/j.1551-2916.2005.00706.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chervonnyi, A. D., i N. A. Chervonnaya. "Synthetic calcium aluminosilicate monolith: I. Specific features of the synthesis". Russian Journal of Inorganic Chemistry 55, nr 6 (czerwiec 2010): 857–65. http://dx.doi.org/10.1134/s0036023610060069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii