Gotowa bibliografia na temat „C–H Bond - Maleimides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „C–H Bond - Maleimides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "C–H Bond - Maleimides"
He, Qiyuan, Yusuke Ano i Naoto Chatani. "The Pd-catalyzed C–H alkylation of ortho-methyl-substituted aromatic amides with maleimide occurs preferentially at the ortho-methyl C–H bond over the ortho-C–H bond". Chemical Communications 55, nr 67 (2019): 9983–86. http://dx.doi.org/10.1039/c9cc05321b.
Pełny tekst źródłaZhao, Sheng-Yin, Hong-Ru Tan, Lun Wang, Jia-Nan Zhu i Zhen-Hua Yang. "Iodine-Promoted C(sp 2)–H Thiolation of Maleimides with Dimethyl Sulfoxide and Thiols". Synthesis 50, nr 20 (30.07.2018): 4113–23. http://dx.doi.org/10.1055/s-0037-1609585.
Pełny tekst źródłaPan, Changduo, Yun Wang, Chao Wu i Jin-Tao Yu. "Rhodium-catalyzed C7-alkylation of indolines with maleimides". Organic & Biomolecular Chemistry 16, nr 5 (2018): 693–97. http://dx.doi.org/10.1039/c7ob03039h.
Pełny tekst źródłaJeganmohan, Masilamani, Meledath Sudhakaran Keerthana i Ramasamy Manoharan. "Cobalt(III)-Catalyzed Redox-Neutral Coupling of Acrylamides with Activated Alkenes via C–H Bond Activation". Synthesis 52, nr 11 (30.03.2020): 1625–33. http://dx.doi.org/10.1055/s-0039-1690866.
Pełny tekst źródłaSun, Meng, Xiang-Xiang Chen, Jiang-Tao Ren, Jing-Lei Xu, Hu Xie, Wei Sun i Ya-Min Li. "Cobalt(III)-Catalyzed 1,4-Addition of C(sp3)–H Bonds to Maleimides". Synlett 29, nr 12 (29.05.2018): 1601–6. http://dx.doi.org/10.1055/s-0037-1609847.
Pełny tekst źródłaBettadapur, Kiran R., Veeranjaneyulu Lanke i Kandikere Ramaiah Prabhu. "A deciduous directing group approach for the addition of aryl and vinyl nucleophiles to maleimides". Chemical Communications 53, nr 46 (2017): 6251–54. http://dx.doi.org/10.1039/c7cc02392h.
Pełny tekst źródłaZhao, Sheng-Yin, Zhen-Hua Yang, Jia-Nan Zhu, Ze-Hui Jin i Jian Zheng. "Copper-Catalyzed Intermolecular Thioamination of Maleimides with Thiols and Formamides: A One-Step Construction of 3-Amino-4-thiomaleimides Using Formamides as Nitrogen Sources". Synthesis 50, nr 23 (7.08.2018): 4627–36. http://dx.doi.org/10.1055/s-0037-1610536.
Pełny tekst źródłaChen, Xiangxiang, Jiangtao Ren, Hu Xie, Wei Sun, Meng Sun i Biao Wu. "Cobalt(iii)-catalyzed 1,4-addition of C–H bonds of oximes to maleimides". Organic Chemistry Frontiers 5, nr 2 (2018): 184–88. http://dx.doi.org/10.1039/c7qo00687j.
Pełny tekst źródłaMangialetto, Jessica, Kiano Gorissen, Lise Vermeersch, Bruno Van Mele, Niko Van den Brande i Freija De Vleeschouwer. "Hydrogen-Bond-Assisted Diels–Alder Kinetics or Self-Healing in Reversible Polymer Networks? A Combined Experimental and Theoretical Study". Molecules 27, nr 6 (17.03.2022): 1961. http://dx.doi.org/10.3390/molecules27061961.
Pełny tekst źródłaMuniraj, Nachimuthu, i Kandikere Ramaiah Prabhu. "Cobalt(III)-Catalyzed C–H Activation: Azo Directed Selective 1,4-Addition of Ortho C–H Bond to Maleimides". Journal of Organic Chemistry 82, nr 13 (19.06.2017): 6913–21. http://dx.doi.org/10.1021/acs.joc.7b01094.
Pełny tekst źródłaRozprawy doktorskie na temat "C–H Bond - Maleimides"
Torkelson, Jeffrey Robert. "C-H bond activation and C-C bond formation at adjacent metals". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ34848.pdf.
Pełny tekst źródłaGuo, Xiangyu. "Ruthenium-catalyzed C-C bond formation via functional-group directed C-H bond activation". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110570.
Pełny tekst źródłaRésuméRuthenium-Catalyzed C-C Bond Formation via Functional-Group Directed C-H Bond ActivationXiangyu GuoSuperviseur: Prof. Chao-Jun LiUniversité McGillCette thèse est le résultat de la recherche sur la formation de liaisons carbone-carbone (C-C), catalysé par le ruthénium. La première partie de cette thèse expose les résultats sur la formation de liaison carbone-carbone (C-C) par la réaction de couplage oxydant par déshydrogénation. La synthèse de composés biaryl par l'utilisation d'un catalyseur de ruthénium a permis la dimérisation des dérivés de la 2-phénylpyridine en présence de chlorure de fer (III) comme oxydant terminal. En outre, l'oxydative cross-coupling entre arènes et cycloalcanes, a montrer une notable, para-sélectivité. La seconde partie de cette thèse, décrit les résultats obtenue sur la réaction d'oléfination decarbonylative entre un aldéhyde et un alcyne vrai, catalyser par le ruthénium. En partant d'aldéhydes aromatiques ou aliphatiques et par l'utilisation de deux systèmes catalytiques, la synthèse chemioselective de double liaison C=C conjuguée ou isolée ont pu être réalisé. Cette réaction fournit ainsi, une intéressante alternative à la synthèse de doubles liaisons C=C par la directe addition de liaison C-H sur une triple liaison.
Laren, Martijn Wouter van. "Palladium-catalyzed C-H and C-N bond formation". [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/75422.
Pełny tekst źródłaVastine, Benjamin Alan. "Understanding mechanisms for C-H bond activation". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2679.
Pełny tekst źródłaWiley, Jack Scott. "C-H bond activation in iridium complexes /". Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8510.
Pełny tekst źródłaTruscott, Fiona Rosemary. "Transition metal catalysed C-C bond formation via C-H functionalisation". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:6a1ef296-8d63-470d-96bd-3e01a887c81f.
Pełny tekst źródłaCatino, Arthur John. "Oxidative C-H and C-C bond functionalization catalyzed by dirhodium caprolactamate". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/4188.
Pełny tekst źródłaThesis research directed by: Chemistry. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Gao, Longhui. "C-H bond activation catalyzed by Ruthenium nanoparticles". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS348/document.
Pełny tekst źródłaDeuterated and tritiated compounds are widely used in numerous applications in chemistry, biology and material science. In the drug discovery and development process, ADME studies require quick access to labelled molecules, otherwise the drug development costs and timeline are significantly impacted. The rapid development of metabolomics has also increased the need for isotopically labelled compounds. In particular, deuterated molecules are used as internal standards for quantitative LC-MS/MS analysis of metabolites in biological fluids and tissues. In this context, a general method allowing the deuterium and tritium labelling of bioactive thioethers using a HIE reaction is described in the first chapter. From a fundamental point of view, this transformation is the first example of (Csp³)-H activation directed by a sulfur atom. In terms of application, this new reaction has been proved to be useful for the preparation of deuterated LC-MS/MS reference materials and tritiated pharmaceuticals owning high specific activity.In the second chapter of this manuscript, the development of a method allowing the cross-dehydrogenative homocoupling of 2-arylpyridines catalyzed by Ru/C is developed. Various substrates with different substituents were efficiently coupled to give the desired dimers in good yield. In terms of application, a series of pyridine-boron complexes derived from the phenyl pyridine dimers were also synthesized and their photophysical properties were studied.In the third chapter, a regioselective palladium catalyzed intramolecular arylation reaction allowing the synthesis of pyridine containing polycyclic compounds is described
Ebe, Yusuke. "Iridium-Catalyzed Carbon-Carbon Bond Formation Reactions via C-H Bond Activation". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225417.
Pełny tekst źródłaLocati, Abel Jean Serge. "Computational study of c-h bond cleavage and c-c bond formation processes catalyzed by transition metal complexes". Doctoral thesis, Universitat Rovira i Virgili, 2012. http://hdl.handle.net/10803/79120.
Pełny tekst źródłaThe first part of the thesis is mainly devoted to the mechanism of a C-H activation reaction by a niobium complex. The mechanism of C-H bond activation of benzene by the TpMe2NbCH3-(c-C3H5)-(MeCCMe) complex was rationalized. The key intermediate is an unusual 2-cyclopropene complex. We rationalized the selectivities obtained for the activation of several alkylaromatics by the 2-cyclopropene niobium complex. The intriguing role of the alkyne ligand of the same complex, and its possible role in the migration processes, was investigated. In the second part of the thesis, we focused on the silicon based cross-coupling. The results suggest than the transmetalation is easier after phosphine dissociation, and in presence of the bromide ligand on the palladium. The beneficial effect of dibenzylideneacetone on the coupling was clarified.
Książki na temat "C–H Bond - Maleimides"
Ribas, Xavi, red. C-H and C-X Bond Functionalization. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737166.
Pełny tekst źródłaXie, Jin, i Chengjian Zhu. Sustainable C(sp3)-H Bond Functionalization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49496-7.
Pełny tekst źródłaDixneuf, Pierre H., i Henri Doucet, red. C-H Bond Activation and Catalytic Functionalization II. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29319-6.
Pełny tekst źródłaDixneuf, Pierre H., i Henri Doucet, red. C-H Bond Activation and Catalytic Functionalization I. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24630-7.
Pełny tekst źródłaMatsumoto, Arimasa. Iron-Catalyzed Synthesis of Fused Aromatic Compounds via C–H Bond Activation. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54928-4.
Pełny tekst źródłaMaiti, Debabrata, i Srimanta Guin, red. Remote CH Bond Functionalizations. Wiley, 2021. http://dx.doi.org/10.1002/9783527824137.
Pełny tekst źródłaXie, Jin, i Chengjian Zhu. Sustainable C(sp3)-H Bond Functionalization. Springer, 2016.
Znajdź pełny tekst źródłaXie, Jin, i Chengjian Zhu. Sustainable C(sp3)-H Bond Functionalization. Springer London, Limited, 2016.
Znajdź pełny tekst źródłaLukašēvics, Tomass. Kobalta katalizēta C‒H saites funkcionalizēšana/Cobalt Catalyzed C‒H Bond Functionalization. RTU Press, 2022. http://dx.doi.org/10.7250/9789934227806.
Pełny tekst źródłaC-H Bond Activation in Organic Synthesis. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "C–H Bond - Maleimides"
Satoh, Tetsuya, i Masahiro Miura. "C-H Bond Alkenylation". W Metal-Catalyzed Cross-Coupling Reactions and More, 1389–426. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527655588.ch18.
Pełny tekst źródłaOtake, Masayuki. "Energy Storage in C–C, H–H and C–H Bond". W Lecture Notes in Energy, 123–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25400-5_8.
Pełny tekst źródłaBouffard, Jean, i Kenichiro Itami. "Rhodium-Catalyzed C–H Bond Arylation of Arenes". W C-H Activation, 231–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_12.
Pełny tekst źródłaWasa, Masayuki, Kelvin S. L. Chan i Jin-Quan Yu. "Asymmetric C-H Bond Functionalization". W Asymmetric Synthesis II, 267–72. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527652235.ch33.
Pełny tekst źródłaLiu, Guosheng, i Yichen Wu. "Palladium-Catalyzed Allylic C–H Bond Functionalization of Olefins". W C-H Activation, 195–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_16.
Pełny tekst źródłaAckermann, Lutz, i Rubén Vicente. "Ruthenium-Catalyzed Direct Arylations Through C–H Bond Cleavages". W C-H Activation, 211–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_9.
Pełny tekst źródłaLebel, Hélène. "Rhodium-Catalyzed CH Aminations". W Catalyzed Carbon-Heteroatom Bond Formation, 137–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch5.
Pełny tekst źródłaYou, Shu-Li, i Ji-Bao Xia. "Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation". W C-H Activation, 165–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_18.
Pełny tekst źródłaBeck, Elizabeth M., i Matthew J. Gaunt. "Pd-Catalyzed C–H Bond Functionalization on the Indole and Pyrrole Nucleus". W C-H Activation, 85–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_15.
Pełny tekst źródłaIlies, Laurean, i Eiichi Nakamura. "Iron-Catalyzed C–H Bond Activation". W Topics in Organometallic Chemistry, 1–18. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_129.
Pełny tekst źródłaStreszczenia konferencji na temat "C–H Bond - Maleimides"
Ulin-Avila, Erick, i Akhilesh Kumar Mishra. "Graphene-based Photonic C-H bond activation". W Frontiers in Optics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/fio.2021.jtu1a.55.
Pełny tekst źródłaWang, Xueqiang, Joan G. Donaire i Ruben Martin. "Metal-Free sp2 and sp3 C-H Functionalization/C-O Bond Forming Reaction". W 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013815132216.
Pełny tekst źródłaNyambo, Silver, Dong-Sheng Yang i Yuchen Zhang. "PROBING SELECTIVE BOND ACTIVATION IN ALKYLAMINES: LANTHANUM-MEDIATED C-H AND N-H BOND ACTIVATION STUDIED BY MATI SPECTROSCOPY." W 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.fb01.
Pełny tekst źródłaKim, Jong, i Dong-Sheng Yang. "YTTRIUM-ASSISTED C-H AND C-C BOND ACTIVATION OF ETHYLENE PROBED BY MASS-ANALYZED THRESHOLD IONIZATION SPECTROSCOPY". W 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.ri06.
Pełny tekst źródłaLian, T., S. E. Bromberg, H. Yang, M. Asplund, R. G. Bergman i C. B. Harris. "Femtosecond IR Studies of Alkane C-H Bond Activation by Organometallic Compounds". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.27a.
Pełny tekst źródłaBaba, Masaaki, Umpei Nagashima i Tsuneo Hirano. "AB INITIO CALCULATIONS ON ROTATIONAL CONSTANT AND AVERAGED C-H(D) BOND LENGTHS OF BENZENE". W 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.tj09.
Pełny tekst źródłaKim, Jong, i Dong-Sheng Yang. "SPECTROSCOPIC IDENTIFICATION OF Y(C4H6) ISOMERS FORMED BY YTTRIUM-MEDIATED C-H BOND ACTIVATION OF BUTENES". W 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.mh09.
Pełny tekst źródłaSubramanian, Raghavendran, i Kazem Kazerounian. "Improved Molecular Model of a Peptide Unit for Proteins". W ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99315.
Pełny tekst źródłaPint, Bruce A., Michael J. Lance i J. Allen Haynes. "The Effect of Coating Composition and Geometry on TBC Lifetime". W ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-65103.
Pełny tekst źródłaJay, Raphael M., Ambar Banerjee, Torsten Leitner, Robert Stefanuik, Ru-Pan Wang, Jessica Harich, Emma Beale i in. "From Femtosecond Excited-State and Dissociation Dynamics to Nanosecond Reaction Kinetics: Following C-H Bond Activation with X-rays". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu1a.2.
Pełny tekst źródłaRaporty organizacyjne na temat "C–H Bond - Maleimides"
Lees, Alistair J. Photochemistry of Intermolecular C-H Bond Activation Reactions. Office of Scientific and Technical Information (OSTI), czerwiec 2000. http://dx.doi.org/10.2172/761218.
Pełny tekst źródłaAsplund, M. C. Time resolved infrared studies of C-H bond activation by organometallics. Office of Scientific and Technical Information (OSTI), czerwiec 1998. http://dx.doi.org/10.2172/290889.
Pełny tekst źródłaLees, A. J. [Photochemistry of intermolecular C-H bond activation reactions]. Progress report, [September 15, 1994--March 15, 1995]. Office of Scientific and Technical Information (OSTI), grudzień 1994. http://dx.doi.org/10.2172/35271.
Pełny tekst źródła